

CS 760: Machine Learning Regression: II

Ilias Diakonikolas

University of Wisconsin-Madison

Sept. 29, 2022

Logistics

- •Announcements:
 - •HW 2 due next Tuesday night
- Class roadmap:

Thursday Sept. 29	Regression II
Tuesday, Oct. 4	Naive Bayes
Thursday, Oct. 6	Neural Networks I
Tuesday, Oct. 11	Neural Networks II
Thursday, Oct. 13	Neural Networks III

Supervised Learning

Outline

- Logistic Regression
 - Maximum likelihood estimation, setup, comparisons
- Logistic Regression: Multiclass
 - Extending to multiclass, softmax, cross-entropy
- Gradient Descent & SGD
 - Convergence proof for GD, introduction to SGD

Outline

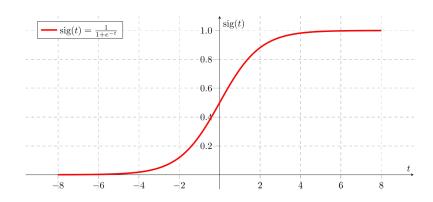
- Logistic Regression
 - Maximum likelihood estimation, setup, comparisons
- Logistic Regression: Multiclass
 - Extending to multiclass, softmax, cross-entropy
- Gradient Descent & SGD
 - Convergence proof for GD, introduction to SGD

Linear Classification: Attempt 2

•Let's think probabilistically. Learn $P_{ heta}(y|x)$ instead

- How?
 - ullet Specify the conditional distribution $\,P_{ heta}(y|x)\,$
 - Use **MLE** to derive a loss
 - Run gradient descent (or related optimization algorithm)

Leads to logistic regression



Likelihood Function

 Captures the probability of seeing some data as a function of model parameters:

$$\mathcal{L}(\theta; X) = P_{\theta}(X)$$

- If data is iid, we have $\ \mathcal{L}(heta;X) = \prod_{i} p_{ heta}(x_{j})$
- Often more convenient to work with the log likelihood
 - Log is a monotonic + strictly increasing function

Maximum Likelihood

 For some set of data, find the parameters that maximize the likelihood / log-likelihood

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta; X)$$

•Example: suppose we have n samples from a Bernoulli distribution (a - a) = 1

$$P_{\theta}(X = x) = \begin{cases} \theta & x = 1\\ 1 - \theta & x = 0 \end{cases}$$

Then,

$$\mathcal{L}(\theta; X) = \prod_{i=1}^{n} P(X = x_i) = \theta^k (1 - \theta)^{n-k}$$

Maximum Likelihood: Example

•Want to maximize likelihood w.r.t. Θ

$$\mathcal{L}(\theta; X) = \prod_{i=1}^{n} P(X = x_i) = \theta^k (1 - \theta)^{n-k}$$

• Differentiate (use product rule) and set to 0. Get

$$\theta^{h-1}(1-\theta)^{n-h-1}(h-n\theta) = 0$$

•So: ML estimate is $\hat{\theta} = \frac{h}{n}$

$$h = |\{x_i \mid x_i = 1\}|$$

ML: Conditional Likelihood

Similar idea, but now using conditional probabilities:

$$\mathcal{L}(\theta; Y, X) = p_{\theta}(Y|X)$$

• If data is iid, we have

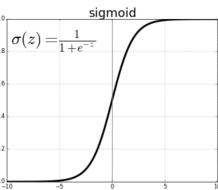
$$\mathcal{L}(\theta; Y, X) = \prod_{j} p_{\theta}(y_j | x_j)$$

 Now we can apply this to linear classification: yields logistic regression.

Logistic Regression: Conditional Distribution

•Notation:
$$\sigma(z) = \frac{1}{1 + \exp(-z)} = \frac{\exp(z)}{1 + \exp(z)}$$

Sigmoid



•Conditional Distribution:

$$P_{\theta}(y=1|x) = \sigma(\theta^T x) = \frac{1}{1 + \exp(-\theta^T x)}$$

Logistic Regression: Loss

•Conditional MLE:

log likelihood
$$(\theta|x^{(i)}, y^{(i)}) = \log P_{\theta}(y^{(i)}|x^{(i)})$$

•So:
$$\min_{\theta} \ell(f_{\theta}) = \min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(y^{(i)}|x^{(i)})$$

$$\min_{\theta} -\frac{1}{n} \sum_{y^{(i)}=1} \log \sigma(\theta^T x^{(i)}) - \frac{1}{n} \sum_{y^{(i)}=0} \log (1 - \sigma(\theta^T x^{(i)}))$$

Logistic Regression: Sigmoid Properties

•Bounded:

$$\sigma(z) = \frac{1}{1 + \exp(-z)} \in (0, 1)$$

•Symmetric:

$$1 - \sigma(z) = \frac{\exp(-z)}{1 + \exp(-z)} = \frac{1}{\exp(z) + 1} = \sigma(-z)$$

•Gradient:

$$\sigma'(z) = \frac{\exp(-z)}{(1 + \exp(-z))^2} = \sigma(z)(1 - (\sigma(z)))$$

Logistic regression: Summary

Logistic regression = sigmoid conditional distribution + MLE

- More precisely:
 - Give training data iid from some distribution D,

• Train:
$$\min_{\theta} \ell(f_{\theta}) = \min_{\theta} -\frac{1}{n} \sum_{i=1}^n \log P_{\theta}(y^{(i)}|x^{(i)})$$

Test: output label probabilities

$$P_{\theta}(y=1|x) = \sigma(\theta^T x) = \frac{1}{1 + \exp(-\theta^T x)}$$

Logistic Regression: Comparisons

Recall the first attempt:

$$\ell(f_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} 1\{ \text{step}(f_{\theta}(x^{(i)}) \neq y^{(i)}) \}$$

- •Difficult to optimize!!
- Another way: run least squares, ignore that y is 0 or 1:

$$\ell(f_{\theta}) = \frac{1}{n} \sum_{j=1}^{n} (f_{\theta}(x^{(j)}) - y^{(j)})^{2}$$

Logistic Regression: Comparisons

Downside: not robust to "outliers"

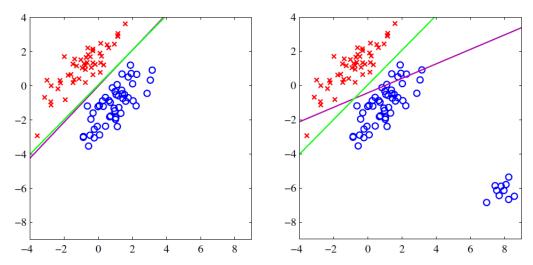


Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive to outliers, unlike logistic regression.

Figure: Pattern Recognition and Machine Learning, Bishop

Break & Quiz

Q3-1: Select the correct option.

- A. For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum).
- B. The cost function for logistic regression trained with 1 or more examples is always greater than or equal to zero.
- Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

Q3-1: Select the correct option.

- A. For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum).
- B. The cost function for logistic regression trained with 1 or more examples is always greater than or equal to zero.

 The cost function for logistic reg

The cost function for logistic regression is convex, so gradient descent will always converge to the global minimum.

- Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

The cost for any example is always >= 0 since it is the negative log of a quantity less than one. The cost function is a summation over the cost for each sample, so the cost function itself must be greater than or equal to zero.

Outline

- Logistic Regression
 - Maximum likelihood estimation, setup, comparisons
- Logistic Regression: Multiclass
 - Extending to multiclass, softmax, cross-entropy
- Gradient Descent & SGD
 - Convergence proof for GD, introduction to SGD

Logistic Regression: Beyond Binary

We started with this conditional distribution:

$$P_{\theta}(y=1|x) = \sigma(\theta^T x) = \frac{1}{1 + \exp(-\theta^T x)}$$

- Now let's try to extend it.
 - ullet Can no longer just use one $heta^T x$
 - But we can try multiple...

Logistic Regression: Beyond Binary

•Let's set, for y in 1,2,...,k

$$P_{\theta}(y=i|x) = \frac{\exp((\theta^i)^T x)}{\sum_{j=1}^k \exp((\theta^j)^T x)}$$

- Note: we have several weight vectors now (1 per class).
- To train, same as before (just more weight vectors).

$$\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(y^{(i)}|x^{(i)})$$

Cross-Entropy Loss

- •Let's define q(i) as the one-hot vector for the ith datapoint.
- •Next, let's let $p^{(i)} = P_{ heta}(y|x^{(i)})$ be our prediction

Note: only 1 term non-zero.

Our loss terms can be written

$$-\log p(y^{(i)}|x^{(i)}) = -\sum_{j=1}^{k} q_j^{(i)} \log p(y=j|x^{(i)})$$

Should look familiar...

•This is the "cross-entropy" $H(q^{(i)},p^{(i)})$

Cross-Entropy Loss

This is the "cross-entropy"

$$H(q^{(i)}, p^{(i)}) = \mathbb{E}_{q^{(i)}}[\log p^{(i)}]$$

- What are we doing when we minimize the cross-entropy?
- Recall KL divergence,

$$D(q^{(i)}||p^{(i)}) = \mathbb{E}_{q^{(i)}}[\log p^{(i)}] - \mathbb{E}_{q^{(i)}}[\log q^{(i)}]$$
 Cross-entropy Cross-entropy (fixed)

Matching distributions!

Softmax

We wrote

$$P_{\theta}(y=i|x) = \frac{\exp((\theta^i)^T x)}{\sum_{j=1}^k \exp((\theta^j)^T x)}$$

- •This operation is called softmax.
 - Converts a vector into a probability vector (note normalization).
 - If one component in the vector **a** is **dominant**, softmax(**a**) is close to one-hot vector

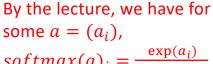
Break & Quiz

Q3-1: Please calculate the softmax of (1, 2, 3, 4, 5).

- 1. (0.067, 0.133, 0.2, 0.267, 0.333)
- 2. (0, 0.145, 0.229, 0.290, 0.336)
- 3. (0.012, 0.032, 0.086, 0.234, 0.636)
- 4. (0.636, 0.234, 0.086, 0.032, 0.012)

Q3-1: Please calculate the softmax of (1, 2, 3, 4, 5).

- 1. (0.067, 0.133, 0.2, 0.267, 0.333)
- 2. (0, 0.145, 0.229, 0.290, 0.336)
- 3. (0.012, 0.032, 0.086, 0.234, 0.636)
- 4. (0.636, 0.234, 0.086, 0.032, 0.012)



$$softmax(a)_i = \frac{\exp(a_i)}{\sum_j \exp(a_j)}.$$

Here:

(A)
$$\frac{a_i}{\sum_j a_j}$$

(B)
$$\frac{\log(a_i)}{\sum_i \log(a_j)}$$

(C)
$$\frac{\exp(a_i)}{\sum_i \exp(a_j)}$$

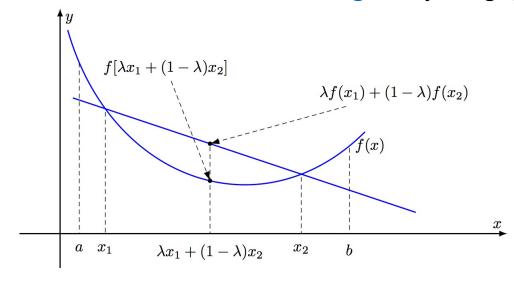
(D)
$$\frac{\exp(-a_i)}{\sum_j \exp(-a_j)}$$

Outline

- Logistic Regression
 - Maximum likelihood estimation, setup, comparisons
- Logistic Regression: Multiclass
 - Extending to multiclass, softmax, cross-entropy
- Gradient Descent & SGD
 - Convergence proof for GD, introduction to SGD

Gradient Descent Analysis: Convexity

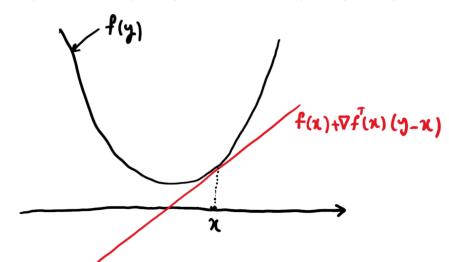
•Recall the definition of a convex function. For f, with convex domain, for all x_1,x_2 in this domain and all $\lambda\in[0,1]$



Gradient Descent Analysis: Convexity

An equivalent definition:

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^T (x_2 - x_1)$$



Function sits above its tangents

Gradient Descent Analysis: Lipschitzness

•The assumption $\|\nabla f(x_1) - \nabla f(x_2)\|_2 \leq L\|x_1 - x_2\|_2$ is equivalent to

$$\nabla^2 f(x) \leq LI$$

- •Recall: $A \preceq B$ means that B = A is positive semidefinite
- •Recall some more: C is positive semidefinite if for all x,

$$x^T C x > 0$$

•We'll use our **two ingredients**. Let's start with a Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + 1/2(y - x)^{T} \nabla^{2} f(z) (y - x)$$

•Next, our gradient Lipschitz condition means $\nabla^2 f(x) \preceq LI$

$$\implies f(y) \le f(x) + \nabla f(x)^T (y - x) + 1/2L||y - x||^2$$

Linear Approximation

Remainder: at most a quadratic

•Let's plug in our GD relationship $y \leftarrow x_{t+1} = x_t - \alpha \nabla f(x_t)$

$$\implies f(y) \le f(x) + \nabla f(x)^T (y - x) + 1/2L||y - x||^2$$

Start with some algebra

$$f(x_{t+1}) \leq f(x_t) + \nabla f(x_t)^T (x_{t+1} - x_t) + 1/2L ||x_{t+1} - x_t||_2^2$$

$$= f(x_t) - \nabla f(x_t)^T \alpha \nabla f(x_t) + 1/2L ||\alpha \nabla f(x_t)||_2^2$$

$$= f(x_t) - \alpha ||\nabla f(x_t)||_2^2 + 1/2L\alpha^2 ||\nabla f(x_t)||_2^2$$

$$= f(x_t) - \alpha (1 - 1/2L\alpha) ||\nabla f(x_t)||_2^2$$

•So, we now have

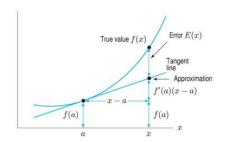
$$f(x_{t+1}) \le f(x_t) - 1/2\alpha \|\nabla f(x_t)\|_2^2$$

Positive except at minimum (where it's 0)

- Promising! Our estimates are getting better.
 - Still need how big these gradient magnitudes are

Haven't used convexity yet, so let's:

$$f(x_t) \le f(x^*) + \nabla f(x)^T (x_t - x^*)$$



•Combine with $|f(x_{t+1})| \le f(x_t) - 1/2\alpha ||\nabla f(x_t)||_2^2$

$$f(x_{t+1}) \leq f(x^*) + \nabla f(x_t)^T (x_t - x^*) - \alpha/2 \|\nabla f(x_t)\|_2^2$$

$$f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (2\alpha \nabla f(x_t)^T (x_t - x^*) - \alpha^2 \|\nabla f(x_t)\|_2^2)$$

$$f(x_{t+1}) - f(x^*) \leq \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_t - \alpha \nabla f(x_t) - x^*\|_2^2)$$

$$f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_t - \alpha \nabla f(x_t) - x^*\|_2^2)$$

Now, simplify

$$f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_t - \alpha \nabla f(x_t) - x^*\|_2^2)$$

$$f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2)$$

So, we have something familiar...

$$f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2)$$

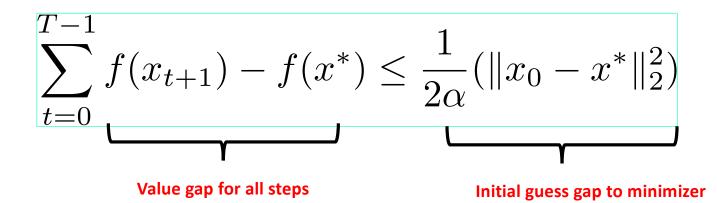
$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \leq \sum_{t=0}^{T-1} \frac{1}{2\alpha} (\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2)$$

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2 - \|x_T - x^*\|_2^2)$$

Now we have

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2 - \|x_T - x^*\|_2^2)$$

Can ignore the rightmost term (we're just making the RHS same or bigger)



Continue,

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2)$$

• But, recall that each iterate has a smaller value, ie,

$$f(x_{t+1}) \le f(x_t) - 1/2\alpha \|\nabla f(x_t)\|_2^2$$

•So,
$$\sum_{t=0}^{T-1} f(x_T) \le \sum_{t=0}^{T-1} f(x_{t+1})$$

Almost there! We have

$$\sum_{t=0}^{T-1} f(x_T) \le \sum_{t=0}^{T-1} f(x_{t+1})$$

Divide by T,

We have
$$\sum_{t=0}^{T-1} f(x_T) \le \sum_{t=0}^{T-1} f(x_{t+1})$$

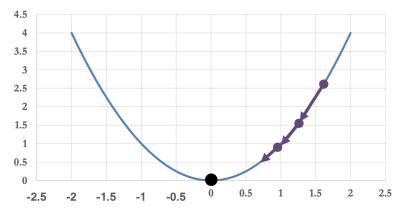
$$f(x_T) - f(x^*) \le \frac{1}{T} \sum_{i=0}^{T-1} f(x_t) - f(x^*)$$

Combine with

$$\sum_{t=0}^{T-1} f(x_{t+1}) - f(x^*) \le \frac{1}{2\alpha} (\|x_0 - x^*\|_2^2)$$

$$\implies f(x_T) - f(x^*) \le \frac{\|x_0 - x^*\|_2^2}{2T\alpha} \qquad \text{Done!}$$

- Note: used all conditions in one or more places in the proof.
 - If you don't use an assumption, either your result is stronger than you thought or (more likely) you are making a mistake
- Proof credit: Ryan Tibshirani.
- Other assumptions that lead to varying proofs/rates:
 - Strong convexity
 - Non-convexity
 - Non-differentiability



GD: Downside

•Why would we use anything but GD?

•Let's go back to ERM.
$$\arg\min_{h\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^n\ell(h(x^{(i)},y^{(i)})$$

- •For GD, need to compute $\
 abla \ell(h(x^{(i)},y^{(i)})$
 - Each step: n gradient computations
 - ImageNet: 10⁶ samples... so for 100 iterations, 10⁸ gradients

Solution: Stochastic Gradient Descent

- Simple modification to GD.
- •Let's use some notation: ERM:

$$\arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f(\theta; x^{(i)}), y^{(i)})$$

Note: this is what we're optimizing over! x's are fixed samples.

•GD:
$$\theta_{t+1} = \theta_t - \frac{\alpha}{n} \sum_{i=1}^n \nabla \ell(f(\theta_t; x^{(i)}), y^{(i)})$$

Solution: Stochastic Gradient Descent

Simple modification to GD:

$$\theta_{t+1} = \theta_t - \frac{\alpha}{n} \sum_{i=1}^n \nabla \ell(f(\theta_t; x^{(i)}), y^{(i)})$$

•SGD:
$$\theta_{t+1} = \theta_t - \alpha \nabla \ell(f(\theta_t; x^{(a)}), y^{(a)})$$

- Here, a is selected uniformly from 1,...,n ("stochastic" bit)
- Note: no sum!
- In expectation, same as GD.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala