') . 1?14 #
e 3 i Sl

CS 760: Machine Learning

Regression: |l
llias Diakonikolas

University of Wisconsin-Madison

Sept. 29, 2022

Logistics

Announcements :

*HW 2 due next Tuesday night

*Class roadmap:

Tuesday, Oct. 4
Thursday, Oct. 6

Tuesday, Oct. 11
Thursday, Oct. 13

Naive Bayes

Neural Networks |

Neural Networks Il

Neural Networks IlI

—

|

dulusea pasiatadng

Outline

*Logistic Regression
 Maximum likelihood estimation, setup, comparisons

*Logistic Regression: Multiclass
*Extending to multiclass, softmax, cross-entropy

*Gradient Descent & SGD
*Convergence proof for GD, introduction to SGD

Outline

*Logistic Regression
 Maximum likelihood estimation, setup, comparisons

Linear Classification: Attempt 2

*Let’s think probabilistically. Learn Fp (y!x) instead

*How?
* Specify the conditional distribution P@ (y\x)
* Use MLE to derive a loss
* Run gradient descent (or related optimization algorithm)

* Leads to logistic regression ﬁ‘

Likelihood Function

*Captures the probability of seeing some data as a function of
model parameters:

L(0; X) = Py(X)
*If data is iid, we have E(Q;X) — HPQ(CE]')
J

*Often more convenient to work with the log likelihood
* Log is @ monotonic + strictly increasing function

Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

) = arg max L(0; X)

*Example: suppose we have n samples from a Bernoulli

distribution _
PQ(X—Q:)—{H r=1
1—60 =0

Then, n

Maximum Likelihood: Example

\Want to maximize likelihood w.r.t. ©

HP ok (1 —)"k

Differentiate (use product rule) and set to 0. Get
" 1(1—6)" "1 (h—nh) =0
h h=[{x_i]|x.i=1}|

*So: ML estimate is é — —
n

ML: Conditional Likelihood

*Similar idea, but now using conditional probabilities:
L(6;Y, X) = po(Y|X)
* |f data is iid, we have

L(6;Y, X) Hpg (y]x;)

* Now we can apply this to linear cIa55|f|cat|on. yields logistic
regression.

Logistic Regression: Conditional Distribution
B 1 ~ exp(?)
- 14exp(—2) 1+ exp(z)

*Notation: U(Z)

I

Sigmoid

e Conditional Distribution:

1
Py(y = 1]z) = U(QTCE) T 1 exp(—07T x)

Logistic Regression: Loss

*Conditional MLE:

log likelihood (0|2, y) = log Py (y ™ |z®)

*So:]_ i . .
' — min - — log Po (9 |2
min £(fs) = min n; og Py(y'V]z")

Or,
1 - 1 '
min — — Z loga(é’Tx(Z)) — — Z log(1 — O(HTm(Z)))
n

0 n = .

Logistic Regression: Sigmoid Properties
1

*Bounded: — 0.1
7() = T € O
*Symmetric:
— 1
= o(z) = P2 = o(—2)

T 14+ exp(—z) exp(z)+1

*Gradient:

o'(z) = —PE) - (0(2))

(1 + exp(—z))?

Logistic regression: Summary

*Logistic regression = sigmoid conditional distribution + MLE

* More precisely:
* Give training data iid from some distribution D,

* Train: 1 ik : :
: — min — — (2) | 1.(%)
m@mé(fg) = min —— E_ log Py(y** |z\")
* Test: output label probabilities B

1
Py(y = 1lx) = O(HTQE) — 7 + exp(—6T 1)

Logistic Regression: Comparisons

*Recall the first attempt:

o) = = 3 Hstep(fo() £ 5)

*Difficult to optimize!!
* Another way: run least squares, ignore that y is O or 1:

n

(o) = + 3 (fo(a?) — 4y

j=1

Logistic Regression: Comparisons

eDownside: not robust to “outliers”

9]
T

—4¥
o
-6 -6 1
&
-8t -8
-4 2 0 2 4 6 8 -4 =2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

Figure: Pattern Recognition and Machine Learning, Bishop

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Q3-1: Select the correct option.

A. For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to
find the global minimum).
B. The cost function for logistic regression trained with 1 or more examples is always greater than or

equal to zero.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

Q3-1: Select the correct option.

A. For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to

find the global minimum).
B. The cost function for logistic regression trained with 1 or more examples is always greater than or

equal to zero. The cost function for logistic regression is

convex, so gradient descent will always
converge to the global minimum.

1. Both statements are true. _

The cost for any example is always >=0

since it is the negative log of a quantity

3. Statement A is true, Statement B is false. less than one. The cost function is a
summation over the cost for each

4. Statement B is true, Statement A is false. _ sample, so the cost function itself must
be greater than or equal to zero.

2. Both statements are false.

Outline

*Logistic Regression: Multiclass
*Extending to multiclass, softmax, cross-entropy

Logistic Regression: Beyond Binary

*\We started with this conditional distribution:

1
Py(y =1|z) = (8") = 1 + exp(—07T 1)

*Now let’s try to extend it.
*Can no longer just use one QTx
* But we can try multiple...

Logistic Regression: Beyond Binary

*Let’s set, foryin1,2,..,k
exp((6*)" x)

S exp((09)Tx)

Py(y = ilz) =

*Note: we have several weight vectors now (1 per class).
*To train, same as before (just more weight vectors).

1 — N
TEE R w S O TG
min n; og Py(y =)

Cross-Entropy Loss

*Let’s define q'? as the one-hot vector for the ith datapoint.
*Next, let’s let p(’) = P, (y|,flj(z)) be our prediction

Note: only 1 term non-zero.

Qur loss terms can be written /

—log p(yV[z"") = Zqﬁ)logp(= jlz)

71=1

\ J
|

Should look familiar...

*This is the “cross-entropy” H(q(’i) 7 p(’i))

Cross-Entropy Loss

*This is the “cross-entropy”

H(g",p") = E i [log p'"]

*What are we doing when we minimize the cross-entropy?
*Recall KL divergence,

D(q"||p") = E, e [log p”] — Eyes) [log ¢'7]
J

\ J |\
|

. .]] Cross-entropy Entropy H(q®")
* Matching distributions! (fixed)

Softmax

*\We wrote

exp((6*)" z)

P, —lx) =
oy =1i) Sk exp((69)7x)

*This operation is called softmax.
* Converts a vector into a probability vector (note normalization).

*If one component in the vector a is dominant, softmax(a) is close to
one-hot vector

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Q3-1: Please calculate the softmax of (1, 2, 3, 4, 5).

1. (0.067,0.133,0.2,0.267,0.333)
2. (0, 0.145, 0.229, 0.290, 0.336)

3. (0.012, 0.032, 0.086, 0.234,
0.636)

4. (0.636,0.234, 0.086, 0.032,
0.012)

Q3-1: Please calculate the softmax of (1, 2, 3, 4, 5).

1. (0.067,0.133,0.2,0.267,0.333)
2. (0, 0.145, 0.229, 0.290, 0.336)

3. (0.012, 0.032, 0.086, 0.234,
0.636)

4. (0.636,0.234, 0.086, 0.032,
0.012)

<4

By the lecture, we have for
some a = (a;),
softmax(a); = _°xp(ey)
X; exp(aj)

Here:

(A)

(B

ai

Zj aj
log(a;)

) 3 ; log(ay)
(C) exp(ai)
)

3, exp(a))
exp(-ay)

(D
%, exp(-aj)

Outline

*Gradient Descent & SGD
*Convergence proof for GD, introduction to SGD

Gradient Descent Analysis : Convexity

*Recall the definition of a convex function. For f, with convex
domain, for all 1, Z2 in this domain and all A € [0, 1]

fAz1 + (1 = A)z2) < Af(z1) + (1 = A)f(22)

J \ J
| |

Convex combination Line segment joining f(x;) and f(x,)
Ty

: Fz1 + (1= N)zo]
g /\f/(/xl) + (1= X)f(z2)

@ T am4(1-Nz T2 b

Gradient Descent Analysis : Convexity

* An equivalent definition:

f(z2) > f(x1) + Vf(z1)" (z2 — 1)
f(9)

P wF i (9-x)

*Function sits above its tangents

Gradient Descent Analysis : Lipschitzness

*The assumption ||V f(z1) — Vf(x2)|l2 < L||x1 — z2||2
is equivalent to

V2f(z) < LI

*Recall: A < B meansthat B — A is positive semidefinite

*Recall some more: Cis positive semidefinite if for all x,

T Cx >0

Gradient Descent: Convergence Proof p. 1

*We'll use our two ingredients. Let’s start with a Taylor
expansion:

fy) = flx) + V(@) (y—)+ 1/2(y —)" V*f(2)(y —)

*Next, our gradient Lipschitz condition means VQf(x) < LI

— f(y) < f(2) + Vf(x)' (y —2) + 1/2L|y — z|°

J \ J
|

|

Linear Approximation Remainder: at most a quadratic

Gradient Descent: Convergence Proof p. 2

*Let’s plug in our GD relationship Yy < xy4+1 = Ty — onf(wt)

— f(y) < f@)+ V(@) (y—a)+1/2L|y — z|°

*Start with some algebra

f(@e1) < f@e) + V(@) (@01 — 24) + 1/2L|z401 — 2413
= f(zt) = V(@) aV f(x) + 1/2L)|aV f(z)]|5
= f(xt) — al|Vf(xe)l3 +1/2La* |V f(z4)]]3
= f(z1) — a(l —1/2La)||V f(z1)|3

Gradient Descent: Convergence Proof p. 3

*So, we now have

flaegr) < flre) — 1/2a||V f(24) |3

|

Positive except at minimum (where it’s 0)

*Promising! Our estimates are getting better.
* Still need how big these gradient magnitudes are

Gradient Descent: Convergence Proof p. 4

*Haven’t used convexity yet, so let’s:

f(ze) < f(z*) + V() (2, — x")]
e Combine with f($t_|_1) S f(xt) — 1/204HVf($t)H%

f(es1) < (") + V()" (we — ") = a/2[|V f(24)]13

F@e) — f(°) < o (209 (@) (0 — 2°) — 0|V f()|)

F(zesn) — fla*) < —

20

nnnnnnn

rrrrrrrrrrrrr

(lze = 2713 = llze — aV f(@e) — 27[3)

Gradient Descent: Convergence Proof p. 5

*Now, simplify

(lwe = 2713 = llze — aV f(@e) — 2713)

\ J
|

This part is just x4

flxer1) — f(@™) <

1
200

(lwe = 2713 = lzer1 — 27]12)

F@e) — f(2°) < 5 -

Gradient Descent: Convergence Proof p. 6

*So, we have something familiar...

1

f(@e41) — f(z¥) < %(Hmt — (|3 =l — z7|13)
|)
|
T —1 _ Can telescope!
1
f(rig1) Z 9% (lwy — 27 Hz |xt41 — H)

1
f(fvt+1) = f(@7) = 5[z - z*||3 = llzr — 273)

Gradient Descent: Convergence Proof p. 7

*Now we have

T—1

1
> S @) = F(@7) < = (llvo — 27|15 = or — 27|3)
t=0

*Can ignore the rightmost term (we’re just making the RHS
same or bigger)

([lzo — z7]12)

J

S Fa) - fa7) <

J
I |

Value gap for all steps Initial guess gap to minimizer

200
\

Gradient Descent: Convergence Proof p. 7

*Continue,

S Fe) — £ < o (llzo — 2 [)

A

*But, recall that each iterate has a smaller value, ie,

f(zes1) < flae) —1/2af|V f(z4)]13

Zf33T Si f(xes1)
=0

*So,

Gradient Descent: Convergence Proof p. 8

T—1
Zf(:vT Z (Tt+1)

*Divide by T, t=0

fler) — i
z—: fl@epn) = fla7) <

e AlImost there! We have

eCombine with

— flor) = f(27) <

o Done!

Gradient Descent: Convergence Proof Recap

*Note: used all conditions in one or more places in the proof.

* If you don’t use an assumption, either your result is stronger than
you thought or (more likely) you are making a mistake

*Proof credit: Ryan Tibshirani.

*Other assumptions that lead to varying proofs/rates:

* Strong convexity
* Non-convexity
* Non-differentiability

4.5
4
3.5
3
2.5
2
1.5
1
0.5

0
25 2 15 -1 -05 © 0.5 1 15 2 2.5

GD: Downside

*Why would we use anything but GD?

*Let’s go back to ERM. arg min — € (@) (%)
: e Z)

*For GD, need to compute Vﬁ(h@(i), y(i))

* Each step: n gradient computations
*ImageNet: 10® samples... so for 100 iterations, 108 gradients

Solution: Stochastic Gradient Descent

*Simple modification to GD.
eLet’s use some notation: ERM:

arg mm—ZE 6’), y)

Note: this is what we’re optimizing over!
x’s are fixed samples.

8% i : .
*GD: 9, =0, — — ZVﬁ(f(Ht;x(”‘)),y(Z))

1=1

Solution: Stochastic Gradient Descent

*Simple modification to GD:

Qo ik : :
Or41 = 01 — o Z VE(f(0r; m(z))ay(z))

1=1

*SGD: Ors1 = 0p — aVL(f(Oy; 2'Y), D)

*Here, a is selected uniformly from 1,...,n (“stochastic” bit)
* Note: no sum!
*In expectation, same as GD.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fred Sala

