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* Motivation, Training, Inference, Smoothing
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* Bernoulli, Multiclass, Gaussian
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Supervised Learning: Review

Problem setting Y
* Set of possible instances
* Unknown target function f X =)

*Set of models (a.k.a. hypotheses) H = {h‘h X — y}

Get
* Training set of instances for unknown target function f,

(2, yW), (@@, 42, (@™, yM)

Goal: model h that best approximates f



Parametric Learning

* A way to categorize learning techniques
* Parametric: hypotheses indexed by a parameter

* Learning: find parameter yielding model that best approximates
the target

*Ex: linear models, neural networks

*Nonparametric methods:
* Instance-based methods (KNN) 0
* Decision trees



Discriminative Models

*ldea: hypothesis h directly predicts the label (given features)
*y = h(x) or p(y[x) = h(x)

*We saw this already in linear regression & logistic regression

* Linear regression: d
1=0

* Logistic regression:

Py(y = 1]z) = o(072) = !

14+ exp(—0Tx)



Generative Models

*Hypothesis h specifies a generative story for how the data
was created

*h(x,y) = p(x,y) or h(x) = p(x) < Note: supervised or
unsupervised

*Select a hypothesis via ML (or MAP)
* Ex: roll a die. Weights for each side define data generation

* Observe training data to learn hypothesis




Discriminative vs Generative

*Can define both for supervised/unsupervised learning
* k-means (discriminative-like) vs mixture-of-Gaussians (generative)

*When should we use one over the other?
e Discussed next

Generative Discriminative

*Typical examples: LearnOpenCV

* Discriminative: linear regression, logistic regression, SVM, many
neural networks (not alll)

* Generative: Naive Bayes, Bayesian Networks, ...



Review: Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

) = arg max L(0; X)

*Example: suppose we have n samples from a Bernoulli

distribution _
PQ(X—Q:)—{H r=1
1—60 =0

Then, n



Review: Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

*Example: exponential distribution

pdf of Exponential(\): f(x) = Ae™

Suppose X; ~ Exponential(\) for1 <i < N.
Find MLE for data D = {1V

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for \.
Compute second derivative and check that it is
concave down at AME,



Review: Maximum Likelihood

*Example: exponential distribution

e First write down log-likelihood of sample.
N .
() = log f(a) (1)
i=1

= loghexp(—Azl)  (2)

i=1
N

Z log(A) + — Az (3)
i=1

Nlog(A) =AY ) (4)



Review: Maximum Likelihood

*Example: exponential distribution

e Compute first derivative, set to zero, solve for \.

i) _ d Nlog(A) =AY =@ (1)

d\ d\
N
N i
=5 - Z:A ) =0 (2)
o =1
N
= AV = (3)




Another Approach: Bayesian Inference

Let’s consider a different approach
*Need a little bit of terminology

P(E|H)P(H)

P(HIE) = ——p 1

* His the hypothesis
* Eis the evidence




Bayesian Inference Definitions

*Terminology:

P(E‘H)P(H) <«<——— Prior
P(E)

P(H|E) =

*Prior: estimate of the probability without evidence



Bayesian Inference Definitions

*Terminology:

Likelihood

-~
E|H)P(H)
P(E)

pE) = 2

Likelihood: probability of evidence given a
hypothesis.
*Compare to the way we defined the likelihood earlier



Bayesian Inference Definitions

*Terminology:

P(E|H)P(H)
P(E)

P(H|E) =
1

Posterior

*Posterior: probability of hypothesis given evidence.



MAP Definition

*Suppose we think of the parameters as random variables
*There is a prior

*Then, can do learning as Bayesian inference

* “Evidence” is the data P(X‘H)P(H)

POIY) = =55

* Maximum a posteriori probability (MAP) estimation

MAP _ (4)
0 arg max | | p(«10)p(6)

1=1



MAP vs ML

\What’s the difference between ML and MAP?

MLE _ (i)
0 arg max 71:[1 p(z'"6)

MAP _ (i)
0 arg mgX}:[lp(x 0)p(6)
*Prior! B
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Q1-1: Are these statements true or false?

(A) Generative methods model joint probability distribution while
discriminative methods model posterior probabilities of Y given X.
(B) We usually train a discriminative model by maximizing the
posteriors for true labels for supervised tasks.

1. True, True

2. True, False

3. False, True

4. False, False



Q1-1: Are these statements true or false?

(A) Generative methods model joint probability distribution while
discriminative methods model posterior probabilities of Y given X.
(B) We usually train a discriminative model by maximizing the
posteriors for true labels for supervised tasks.

1. True, True

2. True, False_

3 ] False True (A) The aim of a generative model is to learn the
’ generative story, i.e. the joint distribution P(X,Y).
4 . False, False On the other hand, a discriminative model aims to

directly learn the posterior probability P(Y | X).

(B) We usually train a discriminative model by
minimizing the corresponding loss function. MLE is
also ok, but it often requires us to specify the
distribution first, which makes the learning problem
more complicated, thus limiting its application area.



Outline

*Naive Bayes
* Motivation, Training, Inference, Smoothing



*The Economist

Application: Parody Detection

*The Onion

La paralizacion

Spain may be heading for its
third election in a year

All latest updates

Stubborn Socialists are blocking Mariano Rajoy from forming a centre-right government

O v Live 50 I W Twoet |

Sep 5th 2016 | MADRID | Europe

BACK in June, after Spain’s second indecisive election in six months, the general

lexpectation was that Mariano Rajoy, the prime minister, would swiftly form a new
government. Although his conservative People’s Party (PP) did not win back the absolute
majority it had lost in December, it remained easily the largest party, with 137 of the 350

fo im bl Mot L H £ o il 1 i o ol £ il "

* ELECTION 2016 MORE ELECTION COVERAGE »

Tim Kaine Found Riding Conveyor
Belt During Factory Campaign Stop

NEWS IN BRIEF
August 23, 2016
VOL 52 ISSUE 33

Politics - Politicians -
Election 2016 - Tim Kaine

AIKEN, SC—Noting that he disappeared for over an hour during a campaign stop meet-

£,

and-greet with workers at a Brid, tire uring plant, sources confirmed

Tuesday that Democratic vice presidential candidate Tim Kaine was finally discovered
riding on one of the factory’s conveyor belts. “Shortly after we arrived, Tim managed to
get out of our sight, but after an extensive search of the facilities, one of our interns
found him moving down the assembly line between several radial tires,” said senior

campaign advisor Mike Henry, adding that Kaine could be seen smiling and laughing as
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Model 0: Not-Naive Model

Generative story:
1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from the Spam
distribution

3. If tails, sample a document ID (X) from the Not-Spam
distribution

P(X,Y) = P(X|Y)P(Y)



Model 0: Not-Naive Model

Generative story:

1. Flip a weighted coin (Y)

2. If heads, roll the yellow many sided die to sample a
document vector (X) from the Spam distribution

3. If tails, roll the blue many sided die to sample a document
vector (X) from the Not-Spam distribution

P(Xla“')XK)Y) :P<X177XK|Y)P(Y)



Model 0: Not-Naive Model

Flip weighted coin

If HEADS, roll
yellow die
y Xp X2 X3 XK
0 110 1 1
1 o|1]|o0 1
1 111 ] 1 1
0 o] 0|1 1
0 1] 0| 1 0
1 110 | 1 0

If TAILS, roll
blue die

27



Model 0: Main Problem

How many terms are we modeling?
-Say features are binary: X; € {0,1}

P(X1,..., Xk|Y)

2k choices of feature vector, each gets its own probability...
* Exponentially big table (in feature vector size)

IS - e 0.0,w
( 6755 ’ L
{ )Ap6 0'0_\' . o ‘




Naive Bayes: Core Assumption

How do we fix this problem?
*Conditional independence of features:

P(X17°°°7XK7Y) :P(XlaaXK’Y)P(Y)

- (H P(ka) P(Y)

k=1

* What do we gain? With binary features, get 2 entries per feature
*So, number of probabilities
2F 5 2k



Naive Bayes: Overall Model

Support: Depends on the choice of event model, P(X,|Y)

Model: Product of prior and the event model

P(X,Y) = P(Y) [ P(XulY)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using the data. For each P(X}|Y)
we condition on the data with the corresponding class.

Prediction: Find the class that maximizes the posterior

y = argmax p(y|x)
Yy




Naive Bayes: Training

*Training: empirically estimate the probabilities
* Store: conditional probability tables (CPTs)

*Suppose A | B’C’

|

Independence

* Need to estimate:

ol oo [l < e
0 0.33 0 0 0.1 0 0 0.2

1 0.67 0.9 0.5

0 1 0 1
1 0 0.9 1 0 0.8
1 1 0.1 1 1

0.5



Naive Bayes: Smoothing

*Training: empirically estimate the probabilities
* We're just obtaining counts to estimate P(B|C)
*Suppose b has k possible values, and our counts are b;,...,b,
*What if b, = 0?

* Predictions will end up being zero... not ideal

* Solution: smooth! Smoothing

parameter
bi + «

N + ak

|

Points with class C

P(B|C) =




Naive Bayes: Predicting
*With conditional probabilities, how to predict?

y = argmax p(y|x) (posterior)

= argmax p(x[y |()])9( v) (by Bayes’ rule)

= argmax p(x|y)p(y)
Yy
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Q2-1: Are these statements true or false?

(A) Naive Bayes assumes conditional independence of features to
decompose the joint probability into the conditional probabilities.
(B) We use the Bayes’ rule to calculate the posterior probability.

1. True, True

2. True, False
3. False, True
4. False, False



Q2-1: Are these statements true or false?

(A) Naive Bayes assumes conditional independence of features to
decompose the joint probability into the conditional probabilities.
(B) We use the Bayes’ rule to calculate the posterior probability.

1. True, True {u—

2. True, False

(A) Just as we learnt in the lecture.

3 False True (B) We use Bayes rule to decompose posterior
] ’ probability into prior probability and

4 False False conditional probability given each class, so
- )

that we can compute it using the estimated
parameters.



Outline

*Naive Bayes Examples
* Bernoulli, Multiclass, Gaussian



Naive Bayes Example 1: Bernoulli

Support: Binary vectors of length K
x € {0,1}*

Generative Story:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(@k,y) Vk € {1, e ,K}

MOdEI: pgb’e(m’ y) — pd)’e(xl) L] 7$K7 y)
K
Y) Hpek (zk|y)

= (9) (1 y) (1 — Oy, )(1—9%)

::1»

k:1




Naive Bayes Example 1: Bernoulli

Support: Binary vectors of length K
x € {0,1}*
Generative Story:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(&k,y) Vk € {1, ‘A

Same as Generic

Model: }, ,(z,y) = (¢)¥(1 — ¢)—¥) ; Naive Bayes

Classification: Find the class that maximizes the posterior

g = argmax p(y|x)
Yy



Training Bernoulli Naive Bayes

*Recall: train (by MLE) is to find class-conditional parameters

*To find P(Y): use all the data

*For P(X;|Y=y): use the data for that class N |
Sy ]I(y(z) =1)

¢ = N
oIy =0ng) =1)
k,0 = N (1) —
D i— Yy =0)
g D IO = 1Az = 1)

27];21 I(y® = 1)
Vk e {1,...,K}




Naive Bayes Example 2: Multinomial

Integer vector (word IDs)

X = |x1,%2,...,xp | Wherex,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y9 ~ Bernoulli(¢)
forj e {1,...,M;}:

x§z) ~ Multinomial(9y<i>, 1)

Model: X
Pe,6( H Po, (Tk|y)

= (¢)Y(1 —¢)1~¥) H Oy,
j=1



Naive Bayes Example 3: Gaussian

Support: X € RK

Model: Product of prior and the event model

p(may) :p(xlw'wa?y)

=p(y) | [ p(zxly)
k=1

Gaussian Naive Bayes assumes that p(z|y) is given by
a Normal distribution.



Class Poll

*Topics so far:
* Instance-based learning (kNN)
* Decision Trees
* Linear models/regression
* Logistic regression
* Optimization: gradient descent, SGD
* Naive Bayes
* Evaluation: ROC, P/R Curves, cross-validation



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fred Sala "



