
Machine Learning Theory CSCI599, Spring 2018

Problem Set 1
Due: Monday, February 19, 3 p.m. by email

Please title your email “CSCI599 PS1”.

1. Assume each example x is given by n boolean variables. A decision list is a function of the
form: “if `1 then b1, else if `2 then b2, else if `3 then b3, . . ., else bm,” where each `i is a literal
(either a variable or its negation) and each bi ∈ {0, 1}.

(a) Show that conjunctions (like x1 ∧x2 ∧x3) and disjunctions (like x1 ∨x2 ∨x3) are special
cases of decisions lists.

(b) Show that decisions lists are a special case of linear threshold functions. That is, any
function that can be expressed as a decision list can also be expressed as a linear threshold
function “f(x) = + iff w1x1 + . . . wnxn ≥ w0”, for some values w0, w1, . . . , wn.

2. An online mistake-bound algorithm is said to be conservative if it changes its hypothesis only
when a mistake is made. All of the online mistake-bound algorithms we have seen in class
(the elimination algorithm, the decision list algorithm, Winnow, etc.) are conservative. In
this problem, you will show that this is not a coincidence: Let C be any concept class, and let
A be any online learning algorithm (not necessarily conservative) which has a finite mistake
bound M for C. Prove that there exists a conservative online learning algorithm A′ for C
which also has mistake bound M .

3. (a) Recall the Winnow1 algorithm explained in class for learning the class of Boolean dis-
junctions. Consider the following modification to the algorithm: The modified algorithm
doubles its weights on positive examples even when it did not make a mistake. What is
the mistake bound of this modified algorithm? Justify your answer.

(b) Fix any value 1 ≤ k ≤ n. Suppose that we run the Winnow1 algorithm on a k-sparse
monotone disjunction over {0, 1}n. Is it possible for the algorithm to make Ω(k log n)
mistakes? Justify your answer.

4. (a) Let Hndis be the class of Boolean disjunctions over the variables x1, . . . , xn. What is the
VC-dimension of the class Hndis?

(b) For a set I ⊆ {1, 2, . . . , n}, we define a parity function hI : {0, 1}n → {0, 1} as follows:
On a binary vector x = (x1, . . . , xn) ∈ {0, 1}n, we have:

hI(x) =

(∑
i∈I

xi

)
mod 2 .

(That is, hI computes the parity of bits in I.) What is the VC-dimension of the class of
all such parity functions, Hnparity = {hI : I ⊆ {1, 2, . . . , n}}?

(c) Find an example of a concept class C such that C is infinite while the VC-dimension of
C is 1. Find an example of a concept class whose VC-dimension is infinity.
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5. The Perceptron Convergence Theorem shows that the Perceptron algorithm will not make
too many mistakes as long as every example is “far” from the separating hyperplane of the
target halfspace. In this problem you will explore a variant of the Perceptron algorithm and
show that it performs well (given a little help in the form of a good initial hypothesis) as long
as every example is “far” (in terms of angle) from the separating hyperplane of the current
hypothesis.

Consider the following variant of Perceptron:

• Start with an initial hypothesis vector w = winit.

• Given example x ∈ Rn, predict according to the linear threshold function w · x ≥ 0.

• Given the true label of x, update hypothesis vector w as follows:

– If the prediction is correct, leave w unchanged.

– If the prediction is incorrect, set w ← w − (w · x)x.

So the update step differs from that of Perceptron shown in class in that (w ·x)x (rather than
x) is added or subtracted to w. (Note that if ‖x‖2 = 1, then this update causes vector w to
become orthogonal to x, i.e., we add or subtract the multiple of x that shrinks w as much as
possible.)

Suppose that we run this algorithm on a sequence of examples that are labeled according to
some linear threshold function v · x ≥ 0 for which ‖v‖2 = 1. Suppose moreover that

• each example vector x has ‖x‖2 = 1;

• the initial hypothesis vector winit satisfies ‖winit‖2 = 1 and winit · v ≥ γ for some fixed
γ > 0;

• each example vector x satisfies |w·x|‖w‖2 ≥ δ, where w is the current hypothesis vector when

x is received. (Note that for a unit vector x, this quantity |w·x|‖w‖2 is the cosine of the angle

between vectors w and x.)

Show that under these assumptions the algorithm described above will make at most 2
δ2

ln(1/γ)
many mistakes.
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