1. **PAC Learning Axis-aligned Rectangles in \mathbb{R}^n**

 Do Exercise 1.1 of the Kearns-Vazirani textbook. In other words, give an efficient PAC learning algorithm for the class of axis-aligned rectangles in \mathbb{R}^n.

2. **Two-Oracle PAC Model**

 Do Exercise 9 in Chapter 3 of the Shalev-Shwartz–Ben-David textbook. In other words, show the equivalence of the standard PAC model and the two-oracle PAC model.

3. **Online to PAC Conversion**

 Recall that the conversion from an online algorithm with mistake bound m to a PAC algorithm given in class works as follows: “Run A on a sequence of examples each drawn independently from D: If hypothesis h ever survives $(1/\epsilon) \log \left(\frac{m+1}{\delta} \right)$ consecutive examples without making a mistake, stop and output h.”

 Now suppose that you have an online algorithm A with some finite mistake bound m, but you don’t know what the value of m is. Explain how you can obtain a PAC algorithm from A. What is the best sample complexity (in terms of m, ϵ, and δ) that you can achieve for your PAC algorithm?

4. **Variants of Consistent Hypothesis Finder**

 In this problem, we will consider two variants of the notion of a “consistent hypothesis finder” given in class and show that each of them suffices for PAC learning. We will assume throughout this problem that \mathcal{H} is a finite hypothesis class.

 (a) We say that a randomized algorithm B is an “unreliable consistent hypothesis finder” for \mathcal{C} using \mathcal{H} if it has the following performance guarantee: Given any sample of m examples $(x^1, c(x^1)), \ldots, (x^m, c(x^m))$ labeled according to some $c \in \mathcal{C}$, with probability $1/m$ (over B’s own internal randomness) B outputs a hypothesis $h \in \mathcal{C}$ that is consistent with all the examples. Prove that an unreliable consistent hypothesis finder can be used to construct a PAC learning algorithm for \mathcal{C}.

 (b) We say that an algorithm B is an “almost consistent hypothesis finder” for \mathcal{C} using \mathcal{H} if it has the following performance guarantee: Given any sample of m examples $(x^1, c(x^1)), \ldots, (x^m, c(x^m))$ labeled according to some $c \in \mathcal{C}$ B outputs a hypothesis $h \in \mathcal{C}$ that is incorrect on at most one of the m examples. Prove that an almost consistent hypothesis finder can be used to construct a PAC learning algorithm for \mathcal{C}.

5. Let X be the infinite set $\{1, 2, 3, \ldots \}$. Let P_1, P_2, P_3, \ldots be an infinite list of computer programs, each of which takes as input an element $x \in X$ and outputs either 0 or 1. That is, each P_i computes some Boolean function $f_i : X \rightarrow \{0, 1\}$. Assume that the list P_1, P_2, P_3, \ldots can be effectively enumerated, meaning that there is some computer program M which, given a value i as input, outputs program P_i.
Suppose you are learning an unknown function f, which is guaranteed to be one of the f_i’s, in the online mistake-bound model. Give a learning algorithm which is guaranteed to make $O(\log t)$ prediction mistakes, where t is the smallest index such that $f = f_t$.