
Approximation of Multiobjective Optimization Problems

Ilias Diakonikolas

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2011

c©2011

Ilias Diakonikolas

All Rights Reserved

ABSTRACT

Approximation of Multiobjective Optimization Problems

Ilias Diakonikolas

We study optimization problems with multiple objectives. Such problems are pervasive across

many diverse disciplines – in economics, engineering, healthcare, biology, to name but a few – and

heuristic approaches to solve them have already been deployed in several areas, in both academia

and industry. Hence, there is a real need for a rigorous investigation of the relevant questions.

In such problems we are interested not in a single optimal solution, but in the tradeoff between

the different objectives. This is captured by the tradeoff or Pareto curve, the set of all feasible

solutions whose vector of the various objectives is not dominated by any other solution. Typically,

we have a small number of objectives and we wish to plot the tradeoff curve to get a sense of the

design space. Unfortunately, typically the tradeoff curve has exponential size for discrete optimiza-

tion problems even for two objectives (and is typically infinite for continuous problems). Hence, a

natural goal in this setting is, given an instance of a multiobjective problem, to efficiently obtain a

“good” approximation to the entire solution space with “few” solutions. This has been the underly-

ing goal in much of the research in the multiobjective area, with many heuristics proposed for this

purpose, typically however without any performance guarantees or complexity analysis.

We develop efficient algorithms for the succinct approximation of the Pareto set for a large class

of multiobjective problems. First, we investigate the problem of computing a minimum set of solu-

tions that approximates within a specified accuracy the Pareto curve of a multiobjective optimization

problem. We provide approximation algorithms with tight performance guarantees for bi-objective

problems and make progress for the more challenging case of three and more objectives. Subse-

quently, we propose and study the notion of the approximate convex Pareto set; a novel notion of

approximation to the Pareto set, as the appropriate one for the convex setting. We characterize when

such an approximation can be efficiently constructed and investigate the problem of computing min-

imum size approximate convex Pareto sets, both for discrete and convex problems. Next, we turn

to the problem of approximating the Pareto set as efficiently as possible. To this end, we analyze

the Chord algorithm, a popular, simple method for the succinct approximation of curves, which is

widely used, under different names, in a variety of areas, such as, multiobjective and parametric

optimization, computational geometry, and graphics.

Table of Contents

1 Introduction 1

1.1 Approximation of the Pareto Set . 3

1.2 Objective Space: Convex or Discrete? . 4

1.3 Minimizing the Computational Effort . 8

1.4 Organization of the Dissertation . 11

2 Background 13

2.1 Basic Definitions . 13

2.1.1 Multiobjective Optimization Problems . 13

2.1.2 Pareto Set and Approximations . 14

2.2 Previous Work . 16

2.3 Related Work . 18

3 Succinct Approximate Pareto Sets 20

3.1 Introduction . 20

3.2 Two Objectives . 22

3.2.1 Preliminaries . 22

3.2.2 Lower Bound . 23

3.2.3 Two Objectives Algorithm . 31

3.2.4 Applications . 43

3.3 d Objectives . 45

3.3.1 Approximation of the optimal ε-Pareto set 45

3.3.2 The Dual Problem . 48

i

3.4 Conclusion . 59

4 Approximate Convex Pareto Sets 61

4.1 Efficient Computability: The Comb Problem . 61

4.2 Proof of Theorem 4.1.1 . 63

4.3 Discussion . 69

5 Succinct Approximate Convex Pareto Sets 71

5.1 Chapter Organization . 71

5.2 Two Objectives – Explicitly Given Points . 72

5.2.1 Convex (Objective) Space – problem QC: 73

5.2.2 Discrete (Objective) Space – problem QD 82

5.2.3 Best k solutions . 86

5.3 Two Objectives – General Results . 87

5.3.1 Exact Comb routine . 87

5.3.2 Approximate Comb routine . 101

5.4 d Objectives . 112

5.4.1 Explicitly Given Points . 112

5.4.2 Approximate Comb Routine . 120

6 The Chord Algorithm 123

6.1 Introduction . 123

6.2 Model and Statement of Results . 125

6.2.1 Preliminaries. 125

6.2.2 The Chord Algorithm. 126

6.2.3 Our Results. 128

6.3 Worst–Case Analysis . 130

6.3.1 Lower Bounds. 130

6.3.2 Upper Bound. 142

6.4 Average Case Analysis . 150

6.4.1 Upper Bounds. 150

ii

6.4.2 Lower Bounds. 163

6.5 Conclusions and Open Problems . 166

7 Conclusions and Open Problems 167

iii

List of Figures

3.1 A polynomial time generic algorithm cannot determine if p is a solution of the given

instance. 25

3.2 Graphs in the reduction of Theorem 3.2.2. 26

3.3 Pareto set for graph H of Theorem 3.2.2. 29

3.4 Illustration of the worst-case performance of the greedy approach. There are no

solution points in the shaded region. 34

3.5 Schematic performance of the factor-2 algorithm. The scale is logarithmic in both

dimensions. There are no solutions in the shaded region. 39

4.1 Illustration of Combδ(w) routine for two minimization objectives. The shaded re-

gion represents the (set of solution points in the) objective space. There exist no

solution points below the dotted line. 62

4.2 Illustration of Combδ(λ) routine. The shaded region represents the (set of solution

points in the) objective space I. There exist no solution points below the dotted line. 64

5.1 Schematic performance of the i-th iteration of algorithm CONVEX-2D. 78

5.2 Illustration of factor 2 lower bound for exact Comb (k = 2). 92

5.3 Illustration of factor 2 lower bound for generic algorithms with approximate GAPδ. 102

5.4 Illustration of (the proof of) Lemma 5.3.10. The figure clearly indicates that the

pairs of points (α, α′) and (β, β′) are ε′-visible from each other with respect to

LE′ε′ . The bold gray segments correspond to (1+ ε′) ·LE(αα′) and (1+ ε′) ·LE(ββ′).105

iv

5.5 An illustration of the set system F . It is assumed for simplicity that A = CP (A).

The shaded region represents the hyperplane class that lies above the set of points

{p2, p3}. 119

6.1 Illustration of the Chord algorithm. 128

6.2 Lower bound for Chord. The figure depicts the case j = k = 4. 133

6.3 Illustration of definitions for counterexample in Figure 6.2. 134

6.4 Illustration of the relation between the horizontal and the ratio distance. 138

6.5 General lower bound for horizontal distance. 142

6.6 Area shrinkage property of the Chord algorithm. 144

6.7 On the Choice of Parameters. 152

6.8 Average case area shrinkage property of the Chord algorithm. 154

v

List of Tables

3.1 Pseudo-code for the greedy algorithm. 32

3.2 Pseudo-code for factor-2 algorithm. 38

3.3 Algorithm for the Dual Problem. 57

4.1 Generic oblivious algorithm for the construction of a polynomial size ε-convex

Pareto set. 67

5.1 Optimal algorithm for explicit two dimensional convex case. 77

5.2 Optimal algorithm for explicit two-dimensional discrete case. 85

5.3 Algorithm for two dimensional discrete convex Pareto approximation (exact Comb). 94

6.1 Pseudo-code for Chord algorithm. 127

vi

To my mother, Elli Diakonikola
who has always made decisions

having her children as her only objective.

vii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Suppose we want to drive from New York to Boston. We care about the travel time, the total

distance, the simplicity of the route (e.g. number of turns), etc. Which route should we choose?

Decision making involves the evaluation of different alternative solutions from a design space,

and the selection of a solution that is “best” according to the criteria of interest. In most situations

there are usually more than one criteria that matter. For example, in network design we are con-

cerned with its cost, capacity, reliability; in investments we care about return and risk; in radiation

therapy we care about the effects on the tumor on the one hand, and healthy organs on the other;

and so forth. These are problems of multiobjective optimization, a research area in the interface of

operations research and microeconomics that has been under intense study since the 1950s, with

many papers, conferences and books, see e.g. [Cli, Ehr, EG, FGE, Mit].

This type of multicriteria or multiobjective problems arise across many diverse disciplines, in

engineering, in economics and business, healthcare, manufacturing, biology, and others. There is an

extensive literature on this subject in operations research and other areas, and heuristic approaches

to solve such problems have already been deployed, in both academia and industry.

Due to the ubiquity of such problems, the following question immediately arises:

• What does it mean to “solve” a multiobjective problem? What is the right “solution concept”?

The basic ingredients of a single-criterion optimization problem are its set of instances, solutions

and objective function (to be minimized or maximized). The objective function is given by an

efficient algorithm f , which given an instance x and a feasible solution s, computes its value f(x, s).

CHAPTER 1. INTRODUCTION 2

We seek, given x, to find argminf(x, s)1.

In a multiobjective optimization problem we have instead d ≥ 2 objective functions (all defined

on the same set of feasible solutions). In such problems, there is typically no solution that is uni-

formly best in all the objectives; hence, it is not immediately obvious what a computational solution

should entail in this setting.

One approach to multicriteria problems is to impose a global utility function g that combines

in some monotone way the different criteria and thereby treat the problem as a single objective

optimization problem. This approach is fine if (i) one can determine ahead of time a global function

g that faithfully reflects the preferences of the decision maker, and (ii) we can optimize g. However,

it is typically hard to tell in advance which utility function to pick without first getting a sense of the

design space and the trade-offs involved, and moreover the preferences of the decision maker may

not be formalized or even quantifiable. Furthermore, different users may have different preferences

with unknown utility functions.

This is why, in multiobjective optimization, usually one cares not only in a single optimal

solution, but in a more complicated object, the set of Pareto-optimal solutions or Pareto set. These

are the solutions that are not dominated by other solutions, that is to say, a solution is Pareto-optimal

if there does not exist another solution that is simultaneously better in all criteria. The Pareto set

represents the range of reasonable “optimal” choices in the design space and captures the intuitive

notion of a “trade-off.”; it is precisely the set of optimal solutions for all possible global utility

functions that depend monotonically on the different objectives.

The common approach in the more computationally–oriented multiobjective optimization is

thus to compute the Pareto set, that is then presented to the decision maker. A decision maker,

presented with the Pareto set, can select a solution that corresponds best to her preferences; as

previously mentioned, different users generally may have different preferences and select different

solutions.

Computing the Pareto set seems to be conceptually the right idea, but it is often computationally

intractable since, even for the simplest problems, its size can be exponential (even for the case of

two objectives) and is infinite for continuous problems. Furthermore, for even the simplest prob-

lems (shortest path, spanning tree, matching) and even for two objectives, determining whether a

1We assume for the sake of the exposition that the objective function is to be minimized.

CHAPTER 1. INTRODUCTION 3

point belongs to the Pareto set is NP-hard. We thus need a solution concept that circumvents these

problems.

A good way to define a meaningful computational problem related to multiobjective optimiza-

tion involves approximation. Ideally, we want to compute efficiently and present to the decision

makers a small set of solutions (as small as possible) that represents as well as possible the whole

range of choices, i.e. that provides a good approximation to the Pareto set. Indeed this is the un-

derlying goal in much of the research in the multiobjective area, with many heuristics proposed,

usually however without any performance guarantees or complexity analysis as we do in theoretical

computer science. In this thesis, we define and systematically investigate the relevant computational

questions. We provide efficient algorithms to compute succinct approximations to the Pareto set for

wide classes of multiobjective problems.

1.1 Approximation of the Pareto Set

The most natural notion of approximation to the Pareto set is based on the concept of an ε-Pareto

set [PY1]: An ε-Pareto set, ε > 0, is a set of solutions that approximately dominate all other

solutions. That is, for every other solution, the set contains a solution that is at least as good

approximately (within a factor 1 + ε) in all objectives. Such an approximation was studied before

for certain problems, e.g. multiobjective shortest paths, for which Hansen [Han] and Warburton

[Wa] showed how to construct an ε-Pareto set in polynomial time (for fixed number of objectives).

Note that typically in most real-life multiobjective problems the number of objectives is small. In

fact, the great majority of the multiobjective literature concerns the case of two objectives.

This notion of approximation is rather attractive for the following reason: Under very general

conditions [PY1], there exists a polynomially succinct (in the input size and 1/ε) ε-approximate

Pareto set. A polynomially small ε-Pareto set always exists, but it is hard to construct in general.

In [PY1] a necessary and sufficient condition for its efficient computability is given, which implies

that for several important combinatorial problems – including multiobjective versions of shortest

path, spanning tree and matching – there is a PTAS for constructing an ε-Pareto set. (It should be

emphasized that the Pareto set is not given to us explicitly. The whole point is to approximate it

without constructing the entire set.)

CHAPTER 1. INTRODUCTION 4

Note that an ε-Pareto set is not unique: many different subsets may qualify and it is quite

possible that some are very small while others are very large (without containing redundant points).

Construction of a polynomial-size approximate Pareto set is useful, but not good enough in itself:

For example, if we plan a trip, we want to examine just a few possible routes, not a polynomial

number in the size of the map. In fact, even in cases where the Pareto set has polynomial size,

we may still want a very small number of solutions that provide a good approximation. Having a

small approximate Pareto set gives a succinct outline of the trade-offs involved and is important for

many reasons. For example, the selected representative solutions are investigated more thoroughly

by humans, hence there should be a small limit on the number of solutions to be examined. For

example, in radiotherapy planning, different plans will be assessed by the physician to select one

that provides the best balance [CHSB]. Obviously, there is a small limit on the number of plans that

can be examined.

The above discussion motivates the following questions.

Consider a multiobjective problem with a fixed number of objectives, for example shortest path with

cost and time objectives. For a given instance, and error tolerance ε, we would like to compute a

minimum cardinality set of solutions that form an ε-Pareto set.

• Can we do it in polynomial time? If not, how well can we approximate the smallest (i.e.

minimum cardinality) ε-Pareto set?

Dually, given an integer k, we would like to compute a set of k solutions that provide the best

approximation to the Pareto set, i.e. form an ε-Pareto set for the minimum possible error ε.

• Can we do it in polynomial time? If not, how well can we approximate the optimal error?

We study the relevant computational problems in Chapter 3.

1.2 Objective Space: Convex or Discrete?

In several problems, the set of solution values in the objective space (and/or decision space) is con-

vex, i.e. if v, v′ are the vectors of objective values for two solutions, then every convex combination

of v, v′ is also the vector of values for some solution.

This is the case for example for Multiobjective Linear Programming (MOLP): minimize (or

CHAPTER 1. INTRODUCTION 5

maximize) a collection of linear functions subject to a set of linear constraints. In this case, the

Pareto curve is a polygonal line for two objectives (a polyhedral surface for more). Although there

is an infinite set of Pareto points, a finite set of points, namely the vertices of the curve, suffice to

represent the curve; every other Pareto point is a convex combination of vertices. Indeed, MOLP has

been studied thoroughly and several algorithms (e.g. Multiobjective Simplex) have been developed

to generate all the vertices of the Pareto set, see e.g. [Ehr, Ze]. Another example is the design

of optimal policies for Markov decision processes with multiple objectives corresponding to the

probabilities of satisfaction of a set of properties of the execution or to given discounted rewards

[EKVY, CMH]; in effect, these problems can be reduced in both cases to MOLP problems.

Convexity can arise in various other ways, in both continuous and discrete problems, even if it is

not present originally. In several applications, solutions that are dominated by convex combinations

of other solutions may be regarded as inferior and thus not desirable. The multicriteria literature

uses sometimes the term “efficient” for a Pareto solution and “supported efficient” for a solution

that is not strictly dominated by the convex combination of other solutions. Thus, sometimes only

supported efficient solutions are sought. These are the solutions whose values lie on the Pareto set of

the convex hull of all solution points. This “boundary” set can be represented by its extreme points

which we call the convex Pareto set of the instance. Of course, if the objective space is convex, then

the boundary set coincides with the Pareto set.

The most common approach to the generation of Pareto points (called weighted-sum method)

is to give weights wi ≥ 0 to the different objective functions fi (assume for simplicity that they

are all minimization objectives) and then optimize the linear combining function
∑

iwifi; this

approach assumes availability of a subroutine Comb that optimizes such linear combinations of the

objectives. This is done for a sequence of weight tuples and then the “dots are connected” to form a

representation of the boundary (lower envelope) of the objective space. For any set of nonnegative

weights, the optimal solution is clearly in the Pareto set, actually in the convex Pareto set. In fact,

the convex Pareto set is precisely the set of optimal solutions for all possible such weighted linear

combinations of the objectives. Of course, we cannot try all possible weights; we must select

carefully a finite set of weights, so that the resulting set of solutions provides a good representation

of the space. Thus, the representation that is obtained is actually an approximate representation of

the Pareto set of the convex hull.

CHAPTER 1. INTRODUCTION 6

In some applications we may actually want to depict this convex trade-off curve; for example

[VV] studies network routing with multiple QoS criteria (these are essentially multiobjective short-

est path problems) and the associated trade-off curves, both the exact Pareto curve and the convex

curve. Another case of convexification is when the decision is randomized, not deterministic (pure),

i.e. the decision is a probability distribution over the set of solutions, and the figures of merit are the

expected values of the objective function. Randomization has the effect of taking the convex hull of

the set of solution points. Note that this holds for all types of objectives (both linear and nonlinear).

In the case of combinatorial optimization problems with linear objectives the convex Pareto

set is closely related to parametric optimization [Gus, Meg1, Meg2]. For example, consider the

parametric s − t shortest path problem where each edge e has cost ce + λde that depends on the

parameter λ. The length of the shortest path is a piecewise linear concave function of λwhose pieces

correspond to the vertices of the convex Pareto curve for the bi-objective shortest path problem with

cost vectors c, d on the edges.

The size (number of vertices) of the convex Pareto set may be much smaller than the size of the

Pareto set. For example, the Pareto set for the bi-objective shortest path problem has exponential

size in the worst-case, and the same is true for essentially all common combinatorial problems (bi-

objective knapsack, spanning trees, etc.) In contrast, the convex Pareto set for bi-objective shortest

paths has quasi-polynomial size, nΘ(logn) (upper and lower bound) [Gus, Car]; for bi-objective

spanning trees it has polynomial size [Chan, Gus]. On the other hand, for bi-objective minimum

cost flows (and for LP) the convex Pareto set, which coincides with the vertices of the Pareto set, has

exponential size in the worst-case [Ru]. Hence, in some cases, even computing the convex Pareto

set can be an intractable problem.

Regarding the approximation of the convex Pareto set, the notion of ε-Pareto set is not the right

one, as it can be very wasteful. For example consider the case of two objectives, and suppose that

the Pareto set P is just a straight line segment ab. The two vertices a, b are not enough to form

an ε-Pareto set Pε: we may need to add many points along (or close to) the segment ab so that

every point of P is almost dominated by a point of Pε. This is obviously redundant and ignores the

convexity of the setting.

A natural definition of approximation in the convex setting is the following: A set S of solution

points is a ε-convex Pareto set if for every solution point p there is a convex combination of members

CHAPTER 1. INTRODUCTION 7

of S that almost dominates p in all objectives (i.e., is within a factor 1 + ε of p or better). Such a set

of points S can be arbitrarily smaller than the smallest ε-Pareto set.

Since any ε-Pareto set is also an ε-convex Pareto set, it follows that a polynomially succinct

ε-convex Pareto set always exists (under the general conditions of [PY1]). A basic computational

question is then the following:

Consider a multiobjective problem with a fixed number of objective functions.

• Is an ε-convex Pareto set polynomial time computable ? Is there a general necessary and

sufficient condition for efficient constructibility ?

Analogously to the nonconvex case, for every instance there is a unique convex Pareto set, but

not a unique ε-convex Pareto set; there are usually many different (nonredundant) such sets and they

could have very different sizes. Hence, the following question arises:

Consider a multiobjective problem for which some ε-convex Pareto set (not necessarily the smallest

one) is computable in polynomial time.

• Can we efficiently construct an ε-convex Pareto set of (approximately) minimum cardinality ?

How well can we approximate the optimum size ?

We study these questions in Chapters 4 and 5.

We note that there is extensive literature in the optimization and management areas on the ap-

proximation of convex Pareto curves, both in terms of general methods and for specific (continuous

and combinatorial) problems; see e.g. [EG, RW] for some references. The bulk of the literature

concerns bi-objective problems; only a very small fraction considers 3 or more objectives. There

are several methods proposed in the multicriteria literature which compute a sequence of solution

points by optimizing weighted linear combinations of the objectives, and then “connect the dots”.

The underlying goal of the methods is basically the same, to obtain a good approximation of the

convex Pareto curve with few points. Usually, however, there are no quantitative guarantees on the

approximation error that is achieved by the methods and the size of the computed set. Also in many

cases the methods try explicitly to get an even distribution of the points on the surface. However, for

the purposes of minimizing the approximation error with a limited number of points, it is better to

have an uneven distribution, with a denser representation in the areas of high curvature, and fewer

CHAPTER 1. INTRODUCTION 8

points in the flat areas. The problem is of course that we are not given explicitly the Pareto surface

(the whole point is to construct a good, succinct representation), but can only access it indirectly.

The problem of computing an approximate convex Pareto curve of minimum cardinality has

some similarities to the problem of computing minimal approximations to polytopes and convex

surfaces (which has been studied in computational geometry, e.g. [ABRSY, Cl, MitS]), but some

important differences also, the main ones being (i) the reference surface (the convex Pareto curve) is

given implicitly, not explicitly, (ii) we have an asymmetric dominance relation here, as opposed to

proximity. Also the metrics of proximity used in geometry are usually different than the ratio mea-

sure here (which is common in the analysis of approximation algorithms). Some of the techniques

developed there however are still useful in our context.

1.3 Minimizing the Computational Effort

In the previous sections, we discussed the problem of computing succinct approximations to the

Pareto set. We did not put any restrictions on the running time of our algorithms (as long as it is

polynomial). A different goal is to construct an ε-approximation to the Pareto set as efficiently as

possible.

Consider for example a multiobjective problem with an efficient Comb routine (for minimizing

monotone linear combinations of the objectives). (As shown in Chapter 4, the existence of such a

routine characterizes the efficient constructibility of an ε-convex Pareto set.) Typically, the Comb

routine is a nontrivial piece of software. Each call (query) takes a substantial amount of time, thus

we want to make the “best use” of the calls – to achieve as good a representation of the space as

possible. Ideally, one would like to achieve the smallest possible error ε with the fewest number of

calls to the routine. That is,

• Given ε > 0, we want to compute an ε-convex Pareto set for the instance at hand using as few

Comb calls as possible.

We emphasize that this metric is quite different from the one of the previous sections. The

problems described in the previous sections placed no restriction on the number of queries, as long

as they are polynomially many (so that the overall algorithms run in polynomial time). An important

point that should be stressed here is that, as in the case of online algorithms, we do not have complete

CHAPTER 1. INTRODUCTION 9

information about the input, i.e. the (convex) Pareto curve is not given explicitly, but can only access

it indirectly through calls to the Comb routine; in fact, the whole purpose is to obtain an approximate

knowledge of the curve.

Both of the metrics are important and reflect different aspects of the use of the approximation

in the decision making process. Consider a problem, say with two objectives, suppose we make

several calls, say N , to the Comb routine, compute a number of solution points, connect them and

present the resulting curve to the decision maker to visualize the range of possibilities, i.e., get an

idea of the true convex Pareto curve. (The process may not end there, e.g., the decision maker may

narrow the range of interest, followed by computation of a better approximation for the narrower

range, and so forth). In this scenario, we want to achieve as small an error ε as possible, using as

small a number N of calls as we can, ideally, as close as possible to the minimum number that

is absolutely needed for the instance. In this setting, the cost of the algorithm is measured by the

number of calls (i.e., the computational effort), and the performance ratio is as usual the ratio of the

cost to the optimum cost.

Consider now a scenario where the decision maker does not just inspect visually the curve, but

will look more closely at a set of solutions to select one; for instance a physician in the radiotherapy

example will consider carefully a small number of possible treatments in detail to decide which one

to follow. Since human time is much more limited than computational time (and more valuable, even

small constant factors matter a lot), the primary metric in this scenario is the number n of selected

solutions that is presented to the decision maker for closer investigation, while the computational

time, i.e. the number N of calls, is less important and can be much larger (as long as it is feasible

of course).

Motivated by this question, in Chapter 6 we analyze the performance of the Chord algorithm, a

simple, natural greedy algorithm for the approximation of the convex Pareto set. The algorithm and

variants of it have been reinvented many times and used often, under various names, for multiobjec-

tive problems [AN, CCS, CHSB, FBR, RF, Ro, YG] as well as several other types of applications

involving the approximation of convex curves. We focus on the bi-objective case; although the al-

gorithm can be defined (and has been used) for more objectives, most of the literature concerns the

bi-objective case, which is already rich enough, and covers also most of the common uses of the al-

gorithm. We prove sharp upper and lower bounds on the performance ratio of the Chord algorithm,

CHAPTER 1. INTRODUCTION 10

both in the worst case and in a reasonable average case setting. We also show an information-

theoretic lower bound, which says that no algorithm can have constant ratio in this setting.

The Chord algorithm is quite natural, it has been often reinvented and is commonly used for a

number of other purposes. As pointed out in [Ro], an early application was by Archimedes who

used it to approximate a parabola for area estimation [Ar]. In the area of parametric optimization,

the algorithm is known as the “Eisner-Severance” method after [ES]. Recall that parametric opti-

mization is closely related to bi-objective optimization. For example, in the parametric shortest path

problem, each edge e has cost ce + λde that depends on a parameter λ. The length of the short-

est path is a piecewise linear function of λ whose pieces correspond to the vertices of the convex

Pareto curve for the bi-objective shortest path problem with cost vectors c, d on the edges. A call to

the Comb routine for the bi-objective problem corresponds to solving the parametric problem for a

particular value of the parameter.

The Chord algorithm is also useful for the approximation of convex functions, and for the ap-

proximation and smoothening of convex and even non-convex curves. In the context of smoothen-

ing and compressing curves and polygonal lines for graphics and related applications, the Chord

algorithm is known as the Ramer-Douglas-Peucker algorithm, after [Ra, DP] who independently

proposed it.

Previous work has analyzed the Chord algorithm (and variants) for achieving an ε-approximation

of a function or curve with respect to vertical and Hausdorff distance, and proved bounds on the cost

of the algorithm as a function of ε: for all convex curves of length L, (under some technical condi-

tions on the derivatives) the algorithm uses at most O(
√
L/ε) calls to construct an ε-approximation

, and there are curves (for example, a portion of a circle) that require Ω(
√
L/ε) calls [Ro, YG].

Note however that these results do not tell us what the performance ratio is, because for many

instances, the optimal cost OPTε may be much smaller than
√
L/ε, perhaps even a constant. For

example, if P is a convex polygonal line with few vertices, then the Chord algorithm will perform

very well for ε = 0; in fact, as shown by [ES] in the context of parametric optimization, if there are

N breakpoints, then the algorithm will compute the exact curve after 2N − 1 calls. (The problem

is of course that in most bi-objective and parametric problems, the number N of vertices is huge, or

even infinite for continuous problems, and thus we have to approximate.)

CHAPTER 1. INTRODUCTION 11

1.4 Organization of the Dissertation

In Chapter 2, we provide the required background from Multiobjective Optimization. We formally

define the (approximate) solution concepts studied throughout this thesis and review the relevant

bibliography.

In Chapter 3, we investigate the problem of computing a minimum set of solutions that ap-

proximates within a specified accuracy ε the Pareto curve of a multiobjective optimization problem.

We show that for a broad class of bi-objective problems (containing many important widely stud-

ied problems such as shortest paths, spanning tree, matching and many others), we can compute

in polynomial time an ε-Pareto set that contains at most twice as many solutions as the minimum

such set. Furthermore we show that the factor of 2 is tight for these problems, i.e., it is NP-hard to

do better. We present upper and lower bounds for three or more objectives, as well as for the dual

problem of computing a specified number k of solutions which provide a good approximation to the

Pareto curve.

In Chapters 4 and 5 we study the succinct approximation of convex Pareto curves of multiobjec-

tive optimization problems. We propose the concept of ε-convex Pareto (ε-CP) set as the appropriate

one for the convex setting, and observe that it can offer arbitrarily more compact representations

than ε-Pareto sets in this context. In Chapter 4, we characterize when an ε-CP can be constructed

in polynomial time in terms of an efficient routine Comb for optimizing (exactly or approximately)

monotone linear combinations of the objectives.

In Chapter 5, we investigate the problem of computing minimum size ε-convex Pareto sets, both

for discrete (combinatorial) and continuous (convex) problems, and present general algorithms us-

ing a Comb routine. For bi-objective problems, we show that if we have an exact Comb optimization

routine, then we can compute the minimum ε-CP for continuous problems (this applies for example

to bi-objective Linear Programming and Markov Decision Processes), and factor 2 approximation

to the minimum ε-CP for discrete problems (this applies for example to bi-objective versions of

polynomial-time solvable combinatorial problems such as Shortest Paths, Spanning Tree, etc.). If

we have an approximate Comb routine, then we can compute factor 3 and 6 approximations re-

spectively to the minimum ε-CP for continuous and discrete bi-objective problems. We also present

upper and lower bounds for three or more objectives.

In Chapter 6, we turn to the problem of constructing an ε-convex Pareto set using as few calls

CHAPTER 1. INTRODUCTION 12

to the Comb routine as possible. To this end, we consider the Chord algorithm, a popular, simple

method for the succinct approximation of curves, which is widely used, under different names, in

a variety of areas, such as, multiobjective and parametric optimization, computational geometry,

and graphics. We analyze the performance of the Chord algorithm, as compared to the optimal

approximation that achieves a desired accuracy with the minimum number of points. We prove

sharp upper and lower bounds, both in the worst case and average case setting.

Finally, in Chapter 7 we conclude this thesis and highlight the main open problems for future

work.

The results of Chapters 3-5 are joint work with Mihalis Yannakakis [DY1, DY2] and those of

Chapter 6 are joint work with Constantinos Daskalakis and Mihalis Yannakakis [DDY].

CHAPTER 2. BACKGROUND 13

Chapter 2

Background

2.1 Basic Definitions

2.1.1 Multiobjective Optimization Problems

We describe a general framework of a multiobjective optimization problem Π to which our results

are applicable. Our framework includes all (discrete) combinatorial problems of interest (whose

corresponding decision problem is in NP), but also contains many other problems (e.g. problems

whose solution set is continuous and contains solutions with irrational coordinates, thus not com-

putable exactly). Our model of computation is the standard discrete Turing machine model.

A multiobjective optimization problem Π has a set IΠ of valid instances, represented by strings

over a fixed finite alphabet Σ, and every instance I ∈ IΠ has an associated set of feasible solutions

S(I). The latter set is typically called solution space or decision space. As usual, it is assumed that,

given a string over Σ, one can determine in polynomial time if the string is a valid instance of the

problem. Unlike usual discrete problems, for a given instance I , the set S(I) may well be infinite;

solutions here are in general real-valued vectors of finite dimension, polynomial in the size |I| of

the instance. If a solution has only rational coefficients, then it can be represented by a finite string

over Σ; in general of course it cannot.

There are d objective functions, f1, f2, . . . , fd, each of which maps every instance I ∈ IΠ and

solution s ∈ S(I) to a real number fj(I, s). The problem specifies for each objective whether

it is to be maximized or minimized. We denote by f = [f1, f2, . . . , fd] the d-vector of objective

CHAPTER 2. BACKGROUND 14

values. For s ∈ S(I), we denote f(s) ≡ [f1(s), f2(s), . . . , fd(s)]. As usual for a computational

context, it is assumed that the objective functions are polynomially computable. That is, there is an

algorithm which, for every instance I and solution s ∈ S(I) with finite representation, computes

fj(I, s) and runs in time polynomial in the size |I| of the instance I and |s| of the solution s. We

restrict the objective values to be positive, as is commonly the case in the context of approximation.

We further assume that there exists a polynomial pΠ(·) such that for every instance I ∈ IΠ and

any solution s ∈ S(I) it holds 2−m ≤ fj(I, s) ≤ 2m, where m = pΠ(|I|). (We remark that the

latter assumption is satisfied by all discrete combinatorial problems whose decision version is in NP.

For such problems, feasible solutions are polynomially bounded in the size of the instance. Since

each fj is polynomially computable, each value fj(I, s) is a rational number whose numerator and

denominator have at most m bits, where m ≤ p(|I|), for some polynomial p.)

For a given instance I , we say that a point p ∈ Rd+ is a solution point if there exists a solution

s ∈ S(I) such that p = f(s). The objective space (for this instance) is the set X(I) =
⋃
s∈S(I) f(s);

the subset of Rd+ containing the images (under f) of feasible solutions.

2.1.2 Pareto Set and Approximations

We say that a d-vector u dominates another d-vector v if it is at least as good in all the objectives,

i.e. uj ≥ vj if fj is to be maximized (uj ≤ vj if fj is to be minimized); the domination is strict

if at least one of the inequalities is strict. Given a (not necessarily finite) set of points S ⊆ Rd+,

the Pareto set of S, denoted by P (S), is the set of undominated points in S. The convex Pareto

set of S, denoted by CP (S), is the minimal set of points in S (i.e. containing no redundant points)

whose convex combinations dominate all vectors in S1. Thus, the convex Pareto set CP (S) can be

obtained from P (S) by omitting the points of P (S) that are dominated by convex combinations of

others. Note that for any set S, the Pareto set and convex Pareto set are unique. A point p ∈ S

belongs to P (S) (resp. CP (S)) iff it is not strictly dominated by any other point in S (resp. convex

combination of points in S).

We say that a d-vector u c-covers another d-vector v if u is at least as good as v up to a factor of

c in all the objectives, i.e. uj ≥ vj/c if fj is to be maximized (uj ≤ cvj if fj is to be minimized).

Given a set S ⊆ Rd+ and ε > 0, an ε-Pareto set of S, denoted by Pε(S), is a set of points in S that

1Observe that if a set dominates P (S), then it also dominates S.

CHAPTER 2. BACKGROUND 15

(1 + ε)-cover all vectors in S2. An ε-convex Pareto set of S, denoted by CPε(S), is a set of points

in S, whose convex combinations (1 + ε)-cover all points in S. Clearly, an ε-Pareto set is also an

ε-convex Pareto set, but the inverse does not generally hold.

At this point, we should stress a crucial distinction between exact and approximate Pareto set

(resp. exact and approximate convex Pareto set). As opposed to the exact Pareto set (resp. exact

convex Pareto set), approximate Pareto sets (resp. approximate convex Pareto sets) are not necessar-

ily unique. More specifically, for a given set S and error tolerance ε, there may exist many ε-Pareto

sets (resp. ε-convex Pareto sets) without redundant points, and they may have very different sizes.

This fact follows as a consequence of the approximate dominance relation.

The above definitions apply to any set S ⊆ Rd+. We will be particularly interested in the case

that the set S corresponds to the set of solution points in the objective space of a multiobjective

problem. Let Π be a d-objective optimization problem in the above defined framework. Fix an

instance I ∈ IΠ. We define domination between any solutions s, s′ ∈ S(I) according to the d-

vectors of their objective values. The Pareto set for the instance I , denoted by P (I), is defined as

P (I)
.
= P (X(I)), i.e. it is the set of undominated solution points. Similarly, the convex Pareto set

for the instance I , denoted by CP (I), is defined as CP (I)
.
= CP (X(I)), i.e. it is the minimal set

of solution points whose convex combinations dominate all vectors in X(I).

Consider a d-objective optimization problem Π. A combining function h : Rd+ → R+ for Π

is called monotone if (i) h is monotonic in each coordinate; (ii) if the i-th objective function fi

of Π is to be maximized, then h is monotone increasing in its i-th coordinate and (iii) if the i-th

objective function fi of Π is to be minimized, then h is monotone decreasing in its i-th coordinate.

In decision-making, we are usually interested in optimizing some unknown monotone combining

function of the objectives h : Rd+ → R+. A point is in the Pareto set iff it is optimal under some

monotone combining function of the objectives. If the combining function is linear (or even quasi-

concave), then an optimal point can always be found in the convex Pareto set. In fact, a solution

point (d-vector) q is in the convex Pareto set iff it is the unique optimum under some linear monotone

combining function.

Given ε > 0, an ε-Pareto set for the instance I , Pε(I), is an ε-Pareto set for X(I), i.e. a

set of solution points that (1 + ε)-cover all vectors in X(I). Similarly, an ε-convex Pareto set for

2Observe again that if a set (1 + ε)-covers P (S), then it also (1 + ε)-covers S.

CHAPTER 2. BACKGROUND 16

the instance I , CPε(I), is an ε-convex Pareto set for X(I), i.e. a set of solution points whose

convex combinations (1 + ε)-cover all vectors in X(I). In this context, we are also interested in

actual solutions that realize these values, but we will often blur the distinction and refer to the exact

or approximate (convex) Pareto set also as a set of solutions that achieve these values - with the

understanding that for each solution point in the associated set, we pick exactly one corresponding

solution. For a given instance, there may exist many ε-(convex) Pareto sets, and they may have very

different sizes. Ideally, we would like to efficiently compute one with the smallest possible size.

In a general multiobjective problem we may have both minimization and maximization objec-

tives. Throughout this thesis, it will be convenient in the algorithms and the proofs to assume that

all objectives are of a particular type, e.g. all are minimization objectives, so that we do not have to

consider all possible combinations. All our results can be extended for the case of maximization or

mixed objectives.

We say that an algorithm that uses a routine as a black box to access the solutions of the mul-

tiobjective problem is generic (or general purpose), as it is not geared to a particular problem, but

applies to all of the problems for which the particular routine is available. All that such an algorithm

needs to know about the input instance is bounds on the minimum and maximum possible values of

the objective functions. Based on the bounds, the algorithm calls the given routine for certain values

of its parameters, and uses the returned results to compute an approximate (convex) Pareto set.

2.2 Previous Work

In this section, we briefly discuss the previous work most relevant to the results in this thesis. It is

shown in [PY1] that for every multiobjective optimization problem in the aforementioned frame-

work, for every instance I and ε > 0, there exists an ε-Pareto set (thus, also an ε-convex Pareto set)

of sizeO((4m/ε)d−1), i.e. polynomial for fixed d. (We note that the exponential dependence on the

number of objectives is inherent.) An approximate (convex) Pareto set always exists, but it may not

be constructible in polynomial time. We say that the problem of computing an ε-(convex) Pareto set

for a multiobjective problem Π has a polynomial time approximation scheme (PTAS) if there is an

algorithm that for every instance I and ε > 0 constructs an ε-(convex) Pareto set in time polynomial

in the size |I| of the instance I . We say that the problem of computing an ε-(convex) Pareto set for a

CHAPTER 2. BACKGROUND 17

multiobjective problem Π has a fully polynomial time approximation scheme (FPTAS) if there is an

algorithm that for every instance I and ε > 0 constructs an ε-(convex) Pareto set in time polynomial

in |I|, the representation size |ε| of ε, and in 1/ε.

There is a simple necessary and sufficient condition [PY1], which relates the efficient com-

putability of an ε-Pareto set for a multiobjective problem Π, with a fixed number of objectives d, to

the following GAP Problem: given an instance I of Π, a (positive rational) d-vector b, and a rational

δ > 0, either return a solution whose vector dominates b or report that there does not exist any

solution whose vector is better than b by at least a (1 + δ) factor in all of the coordinates. As shown

in [PY1], there is an PTAS (resp. FPTAS) for constructing an ε-Pareto set iff there is a subroutine

GAP that solves the GAP problem for Π in time polynomial in |I| and |b| (resp. in |I|, |b|, |δ| and

1/δ).

The one direction of this equivalence is quite simple: if we can construct an ε-Pareto set Pε(I)

in time polynomial in |I|, then the following simple algorithm solves the GAP problem: construct

an ε-Pareto set Pε(I) and check if the given vector b is dominated by any point of Pε(I); if so,

then return the corresponding solution, else return NO. Conversely, to compute a polynomial size ε-

Pareto set, consider the following scheme: Divide the objective space geometrically into rectangles,

such that the ratios of the large to the small coordinates is (1 + ε′) ≤
√

1 + ε in all dimensions; here

ε′ is a rational that approximates
√

1 + ε− 1 from below and which has representation size O(|ε|).

Proceed to call GAPε′ on all of the rectangle corner points, and keep an undominated subset of all

points returned. It is not hard to see that this is an ε-Pareto set of cardinality O((4m/ε)d−1).

As a corollary, a polynomial time algorithm for the GAP problem is clearly a sufficient condition

for the polynomial constructibility of an ε-convex Pareto set. However, as shown in Chapter 4, it is

not a necessary condition.

Vassilvitskii and Yannakakis [VY] give generic algorithms that compute small ε-Pareto sets and

are applicable to all multiobjective problems possessing a (fully) polynomial GAP routine. They

consider the following “dual” problems: Given an instance and an ε > 0, construct an ε-Pareto set

of as small size as possible. And dually, given a bound k, compute an ε-Pareto set with at most k

points that has as small an ε value as possible. We summarize their results in Chapter 3.

CHAPTER 2. BACKGROUND 18

2.3 Related Work

Trade-offs are present everywhere in life and science – in fact, one can argue that optimization

theory studies the very special and degenerate case in which we happen to be interested in only

one objective. As a consequence, the literature in multi-objective optimization is huge, and it is not

possible to present a complete overview. We refer the reader to the book by Ehrgott [Ehr] and the

survey collection by Ehrgott and Gandibleux [EG]. In the following, we attempt to present a brief

summary of the literature that is most relevant to the results in this thesis.

Many algorithms for generating the Pareto set (or convex Pareto set) of various problems have

been proposed in the optimization literature, see e.g. [NU, KW] for multiobjective knapsack prob-

lems and [Ze] for multiobjective linear programming. Since the worst-case size of the Pareto set

can be exponential for most problems, these algorithms do not run in polynomial time. Moreover,

a variety of heuristics have been proposed for the approximation of the Pareto set [Coh, DasDen],

however none of these methods provides any guarantees on the approximation performance or run-

ning time.

One of the typical ways to handle multiple criteria in TCS has been to optimize one subject

to bounds on the others, see e.g. [Rav+] for an early example in bi-criteria network design. The

problem of efficiently approximating the Pareto set for the multi-objective shortest path problem was

considered in the pioneering work by Hansen [Han] and Warburton [Wa] who showed that there is

an FPTAS for constructing an ε-Pareto set. In [SOD] the authors give conditions for the existence

of an FPTAS for the computation of ε-Pareto sets for several combinatorial problems, including

network flow and scheduling problems. A recent sequence of papers [ABG, BMP, MR] study the

approximability of the multi-objective traveling salesman problem (with triangle inequalities).

The results in this thesis are concerned with the design of efficient algorithms to approximate

the Pareto set. These algorithms are guaranteed to run in polynomial time independent of the size

of the (exact) Pareto set. A different but related line of work [BV04, KN07, RT09] establishes

that the expected size of the Pareto set for combinatorial problems with linear objective functions

is polynomial in an appropriate smoothed input-model. Consider a multiobjective problem with

linear objective functions. Suppose we are given a worst-case instance of the problem and then

randomly perturb the coefficients in the objective functions. The goal is to show that the expected

size of the Pareto set (resp. convex Pareto set) in this model is bounded by a polynomial in the

CHAPTER 2. BACKGROUND 19

size of the input and the perturbation. (The degree of the polynomial increases with the number

d of objectives.) Several heuristics for multiobjective problems run in output-polynomial time in

the size of the Pareto set (resp. convex Pareto set). Hence, such a result would provide a plausible

explanation for the observed practicality of such heuristics on real-world instances.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 20

Chapter 3

Succinct Approximate Pareto Sets

3.1 Introduction

As argued in Chapter 1, construction of a polynomial-size approximate Pareto set is useful, but

not good enough in itself: For example, if we plan a trip, we want to examine just a few possible

routes, not a polynomial number in the size of the map. More generally, in typical multicriteria

situations, the selected representative solutions are investigated more thoroughly by the decision

maker (designer, physician, corporation, etc.) to assess the different choices and pick the most

preferable one, based possibly on additional factors that are perhaps not formalized or not even

quantifiable. We thus want to select as small a set as possible that achieves a desired approximation.

In [VY] the problem of constructing a minimum ε-Pareto set was raised formally and investi-

gated in a general framework. It was shown that for all bi-objective problems with a polynomial-

time GAP routine, one can construct an ε-Pareto set that contains at most 3 times the number of

points of the smallest such set; furthermore, the factor 3 is best possible in the sense that for some

problems it is NP-hard to do better. Note that although the factor 3 of [VY] is best possible in

general for two objectives, one may be able to do better for specific problems.

We show in this chapter, that for an important class of bi-objective problems (containing many

widely studied natural ones such as shortest paths, spanning tree, matching, knapsack, scheduling

problems and others) we can obtain a 2-approximation, and furthermore the factor of 2 is tight for

them, i.e., it is NP-hard to do better. Our algorithm is a general algorithm that relies on a routine

for a stronger version of the Gap problem, namely a routine that solves approximately the following

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 21

Restricted problem: Given a (hard) bound b1 for one objective, compute a solution that optimizes

approximately the second objective subject to the bound. Many problems (e.g. shortest paths, etc.)

have a polynomial time approximation scheme for the Restricted problem. For all such problems,

a 2-approximation to the minimum ε-Pareto set can be computed in polynomial time. Furthermore,

the number of calls to the Restricted routine (and an associated equivalent dual routine) is linear in

the size OPTε of the optimal ε-Pareto set.

The bi-objective shortest path problem is probably the most well-studied multiobjective prob-

lem. It is the paradigmatic problem for dynamic programming (thus can express a variety of prob-

lems), and arises itself directly in many contexts. One area is network routing with various QoS

criteria (see e.g. [CX2, ESZ, GR+, VV]). For example, an interesting proposal in a recent paper

by Van Mieghen and Vandenberghe [VV] is to have the network operator advertise a portfolio of

offered QoS solutions for their network (a trade-off curve), and then users can select the solutions

that best fit their applications. Obviously, the portfolio cannot include every single possible route,

and it would make sense to select carefully an “optimal” set of solutions that cover well the whole

range. Other applications include the transportation of hazardous materials (to minimize risk of

accident, and population exposure) [EV], and many others; we refer to the references, e.g. [EG]

contains pointers to the extensive literature on shortest paths, spanning trees, knapsack, and the

other problems. Our algorithm applies not only to the above standard combinatorial problems, but

more generally to any bi-objective problem for which we have available a routine for the Restricted

problem; the objective functions and the routine itself could be complex pieces of software without

a simple mathematical expression.

Organization. The structure of this chapter is as follows: We present in Section 3.2 our general

lower and upper bound results for bi-objective problems, as well as applications to specific prob-

lems. In Section 3.3 we present some results for d = 3 and more objectives. Here we assume

only a GAP routine; i.e. these results apply to all problems with a polynomial time constructible

ε-Pareto set. It was shown in [VY] that for d = 3 it is in general impossible to get any non-trivial

approximation: for any parameter k, there exist instances with O(k) points in which we cannot

efficiently distinguish (given the GAP routine) whether the optimal ε-Pareto set has 1 point or (at

least) k points. This means that one has to relax ε, i.e compute an ε′-Pareto set for some ε′ > ε and

compare its size to the smallest ε-Pareto. Combining results from [VY] and [KP] we show that for

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 22

any ε′ > ε we can construct an ε′-Pareto set of size cOPTε, i.e. within a constant factor c of the

size OPTε of the optimal ε-Pareto set. For general d, the problem can be reduced to a Set Cover

problem whose VC dimension and codimension are at most d, and we can construct an ε′-Pareto set

of size O(d log OPTε) ·OPTε.

We also study the Dual problem: For a specified number k of points, find k points that provide

the best approximation to the Pareto curve, i.e. that form an ε-Pareto set with the minimum possible

ε. In [VY] it was shown that for d = 2 objectives the problem is NP-hard, but we can approximate

arbitrarily well (i.e. there is a PTAS) the minimum approximation ratio ρ∗ = 1 + ε∗. We show that

for d = 3 this is not possible, in fact one cannot get any multiplicative approximation (unless P=NP).

We exploit a relationship of the Dual problem to the asymmetric k-center problem and techniques

from the latter problem to show that the Dual problem can be approximated (for d = 3) within a

constant power, i.e. we can compute k points that cover every point on the Pareto curve within a

factor ρ′ = (ρ∗)c or better in all objectives, for some constant c. (It follows from our results that

c ≤ 9.) For small ρ∗, i.e. when there is a set of k points that provides a good approximation to the

Pareto curve, constant factor and constant power are related, but in general of course they are not.

3.2 Two Objectives

3.2.1 Preliminaries

We use the following notation in this section. Consider the plane whose coordinates correspond

to the two objectives. Every solution is mapped to a point on this plane. We use x and y as the

two coordinates of the plane. If p is a point, we use x(p), y(p) to denote its coordinates; that is,

p =
(
x(p), y(p)

)
.

We consider the class of bi-objective problems Π for which we can approximately minimize one

objective (say the y-coordinate) subject to a “hard” constraint on the other (the x-coordinate). Our

basic primitive is a polynomial time (or fully polynomial time) routine for the following Restricted

problem (for the y-objective): Given an instance I ∈ IΠ, a (positive rational) bound C and a

parameter δ > 0, either return a solution point s̃ satisfying x (s̃) ≤ C and y (s̃) ≤ (1 + δ) ·

min {y over all solutions s ∈ S(I) having x(s) ≤ C} or correctly report that there does not exist

any solution s such that x (s) ≤ C. For simplicity, we will drop the instance from the notation and

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 23

use Restrictδ (y, x ≤ C) to denote the solution returned by the corresponding routine. If the routine

does not return a solution, we will say that it returns NO. We say that a routine Restrictδ (y, x ≤ C)

runs in polynomial time (resp. fully polynomial time) if its running time is polynomial in |I| and

|C|1 (resp. |I|, |C|, |δ| and 1/δ). The Restricted problem for the x-objective is defined analogously.

We will also use the Restricted routine with strict inequality bounds; it is easy to see that they are

polynomially equivalent.

Note that in general the two objectives could be nonlinear and completely unrelated. Moreover,

it is possible that a bi-objective problem possesses a (fully) polynomial Restricted routine for the

one objective, but not for the other. The considered class of bi-objective problems is quite broad and

contains many well-studied natural ones, most notably the bi-objective shortest path and spanning

tree problems (see Section 3.2.4 for a more detailed list of applications).

The structure of this section is as follows: In Section 3.2.2, we show that, even if the given

bi-objective problem possesses a fully polynomial Restricted routine for both objectives, no generic

algorithm can guarantee an approximation ratio better than 2. (This lower bound applies a fortiori

if the Restricted routine is available for one objective only.) Furthermore, we show that for two

such natural problems, namely, the bi-objective shortest path and spanning tree problems, it is NP-

hard to do better than 2. In Section 3.2.3 we give a matching upper bound: we present an efficient

2-approximation algorithm that applies to all of the problems that possess a polynomial Restricted

routine for one of the two objectives. In Section 3.2.4 we discuss some applications.

3.2.2 Lower Bound

To prove a lower bound for a generic procedure, we present two Pareto sets which are indistin-

guishable in polynomial time from each other using the Restricted routine as a black box, yet whose

smallest ε-Pareto sets are of different sizes.

Proposition 3.2.1. Consider the class of bi-objective problems that possess a fully polynomial Re-

stricted routine for both objectives. Then, for any ε > 0, there is no polynomial time generic

algorithm that approximates the size of the smallest ε-Pareto set P ∗ε to a factor better than 2.

1For a rational number C, we denote by |C| the bit complexity of its representation as a ratio of relatively prime

integers.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 24

Proof. Fix a rational ε > 0 and consider the following set of points: p = (x(p), y(p)), q =(
x(p)1+2ε

1+ε ,
y(p)
1+ε

)
, r =

(
x(p)
1+ε , y(p)1+2ε

1+ε

)
, pq =

(
x(p) + 1, y(p)(1− 1

x(p))
)

and pr =
(
x(p)(1− 1

y(p)), y(p) + 1
)

,

where x(p), y(p) > 1 + 1
ε (see Figure 3.1). Let P = {p, q, r, pq, pr} and P ′ = {q, r, pq, pr} be

the feasible (solution) sets corresponding to two input instances. Note that p (1 + ε)-covers all the

points, pq does not (1 + ε)-cover r (due to the x coordinate) and pr does not (1 + ε)-cover q (due

to the y coordinate). It is easy to see that the smallest ε - Pareto set for P consists of only one point

(namely point p), while the smallest ε - Pareto set for P ′ must include two points.

We can show that a generic algorithm is guaranteed to tell the difference between P and P ′

only if 1/δ is exponential in the size of the input. The argument is very similar to the proof of

Theorem 1 in [VY]. Let x(p) = y(p) = M , where M is an integer value exponential in the size of

the input and 1/ε. By exploiting the fact that, in some cases, our primitive is not uniquely defined,

we can argue that a polynomial time generic algorithm cannot distinguish between instances P and

P ′. More specifically, a generic algorithm is guaranteed to tell the difference between P and P ′

only if the tolerance δ is inverse exponential in the size of the input.

First, note that both points q and r can be efficiently computed by appropriately using the given

routine; these two points suffice to (1 + ε)-cover the feasible set in both cases. Distinguishing

between the two instances means determining whether p is part of the solution. Assume that we use

the operation Restrictδ(x, y ≤ C), where C ∈ [y(p), y(pr)). It is easy to see that this is the only

“meaningful” operation using this routine as a black box. Then, even if p is part of the solution, by

definition, Restrictδ can return pq as long as x(pq) ≤ (1 + δ)x(p) or equivalently δ ≥ 1
M . But since

we want a polynomial time algorithm, 1
δ has to be polynomial in lgM ; hence, the latter constraint

must hold. By symmetry, the same property holds for the Restrictδ(y, ·) routine. Therefore, using

each of these routines as a black box, a polynomial time algorithm cannot determine if p is part of

the solution, and it is thus forced to take at least two points, even when it is presented with the set

P . Note that the above configuration can be replicated to show that it is impossible for a generic

algorithm to determine whether the smallest ε-Pareto set has k points or 2k points are needed. �

In fact, we can prove something stronger (assuming P 6= NP) for the bi-objective shortest path (BSP)

and spanning tree (BST) problems. In the BSP problem, we are given a (directed or undirected)

graph, positive rational “costs” and “delays” for each edge and two specified nodes s and t. The

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 25

x

y

p

q

r

pq

pr

Figure 3.1: A polynomial time generic algorithm cannot determine if p is a solution of the given

instance.

set of feasible solutions is the set of s − t paths. The objectives (to be minimized) are linear, i.e.

the “total weight” of a path equals the sum of the weights of its edges. The BST problem is defined

analogously. These problems are well-known to possess polynomial Restricted routines for both

objectives [LR, GR]. We show the following:

Theorem 3.2.2. a. For the BSP problem, for any k from k = 1 to a polynomial, it is NP-hard to

distinguish the case that the minimum size OPTε of the optimal ε-Pareto set is k from the case that

it is 2k − 1.

b. The same holds for the BST problem for any fixed k.

Proof. The reductions are from the Partition problem [GJ]; we are given a set A of n positive

integers A = {a1, a2, . . . , an}, and we wish to determine whether it is possible to partition A into

two subsets with equal sum.

a. For simplicity, we first prove the theorem for k = 1 and then generalize the construction.

Given an instance of the Partition problem, we construct an instance of the BSP problem as follows:

Let G be a graph with n + 1 nodes vi, i ∈ [n + 1] and 2n edges {ej , e′j}, j ∈ [n]. We attach

the pair of (parallel) edges {ei, e′i} from vi to vi+1, i ∈ [n] and set s ≡ v1 and t ≡ vn+1. We

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 26

s
t

v1

1
v2

1
vn

1
vn+1

1

v1
j

v2
j vn

j
vn+1

j

v1
k

v2
k vn

k vn+1

k

vi
1

vi+1

1

vi
 j vi+1

j

vi
k vi+1

k

ei
 j

e'i
 j

G1

G j

G
k

H

v1 v2 vn vn+1vi vi+1

G

v1 v2 vn vn+1
vi vi+1

G’

v0

g1

g2

gk

Figure 3.2: Graphs in the reduction of Theorem 3.2.2.

now specify the two cost functions c(·) and d(·) on the edges: c(ei) = d(e′i) = S + 2εain and

d(ei) = c(e′i) = S, where S =
∑n

i=1 ai.

Clearly, this simple transformation defines a bijection between subsets of [n] and s − t paths

in G; the set J ⊆ [n] is mapped to the s − t path PJ =
⋃
i∈J{ei} ∪

⋃
i 6∈J{e′i}. Since c(PJ) =

nS + 2εn(
∑

i∈J ai) and d(PJ) = nS + 2εn(
∑

i 6∈J ai), each s − t path P , satisfies the equation

c(P) + d(P) = 2(1 + ε)nS; hence, all feasible solutions are undominated.

Now observe that two solution points suffice to (1 + ε)-cover the feasible set; just pick the

(“extreme”) points r = ((1 + 2ε)Sn, Sn), l = (Sn, (1 + 2ε)Sn), corresponding to the s− t paths

P[n] =
⋃n
i=1{ei} and P∅ =

⋃n
i=1{e′i} respectively. Indeed, r (1 + ε)-covers all the points having

cost (x-coordinate) at least (1+ε)Sn (since (1+2ε)/(1+ε) < 1+ε). Equivalently, it (1+ε)-covers

all the solution points having delay (y-coordinate) up to (1 + ε)Sn (since all the solutions lie on

the line segment x+ y = 2(1 + ε)nS). Moreover, the point l (1 + ε)-covers all the solution points

having y-coordinate at least (1 + ε)Sn.

Since for each feasible solution P it holds min{c(P), d(P)} ≥ nS (and the “extreme” paths

have cost or delay equal to nS), it follows that there exists an ε-Pareto set containing (exactly)

one point if and only if there exists a path in G with coordinates ((1 + ε)Sn, (1 + ε)Sn). It is

immediate to verify that such a path exists if and only if there is a solution to the original instance

of the Partition problem.

Note that the above part of the proof does not rule out the possibility of an efficient addi-

tive approximation algorithm, i.e. an algorithm that outputs an ε-Pareto set of cardinality at most

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 27

OPTε + α, where α is an absolute constant. We can rule this out as follows: Intuitively, we can

think of the Pareto set of G as a “cluster”. To prove the theorem for k > 1, the goal is to construct

an instance of the problem such that the corresponding Pareto set consists of k such clusters that are

“(1+ ε)-far” from each other, i.e. no point in a cluster (1+ ε)-covers any point in a different cluster.

For the BSP problem, we can generalize the proof to hold for any k = poly(n,
∑n

i=1 log(ai)) and

for all ε > 0. This can be achieved by exploiting the combinatorial structure of the problem; we

essentially replicate the graph G k times and appropriately scale the weights.

Formally, consider k (disjoint) copies of the graph G, Gj = (V j , Ej), j ∈ [k], with V j =⋃n+1
i=1 {v

j
i } and Ej =

⋃n
i=1{e

j
i , e
′j
i}. Add a (source) node s, a (sink) node t; for each j add an edge

from s to vj1 and one from vjn+1 to t. That is, construct the graph H = (VH , EH) (see Figure 3.2)

with

VH = {s, t} ∪
k⋃
j=1

V j and EH =
k⋃
j=1

{(s, vj1) ∪ Ej ∪ (vjn+1, t)}

Assign zero cost and delay to each edge incident to s or t† and set:

(1 + 2ε)2(j−1)c(eji) = d(e′
j
i)/(1 + 2ε)2(j−1) = S + 2εain

(1 + 2ε)2(j−1)c(e′
j
i) = d(eji)/(1 + 2ε)2(j−1) = S

From the above equations, it follows that for each s− t path Pj “using” graph Gj , j ∈ [k], it holds:

(1 + 2ε)2(j−1)c(Pj) + d(Pj)/(1 + 2ε)2(j−1) = 2(1 + ε)nS

This implies that all feasible solutions are undominated. In particular, it is easy to see that the Pareto

set for this instance is the union of k disjoint “clusters” with endpoints lj =
(

Sn
(1+2ε)2(j−1) , Sn(1 + 2ε)2(j−1)+1

)
and rj =

(
Sn

(1+2ε)2(j−1)−1 , Sn(1 + 2ε)2(j−1)
)

, j ∈ [k]. The solution points in each cluster lie on the

line segment ljrj . (The objective space for this instance is illustrated in Figure 3.3.)

Now notice that no solution point corresponding to an s − t path using graph Gj is (1 + ε)-

covered by any point corresponding to an s − t path using graph Gl for j 6= l. Indeed, due to the

structure of the Pareto set, it suffices to check that, for each j ∈ [k − 1], the points lj and rj+1 do

not (1 + ε)-cover each other. This holds by construction: rj+1 is a factor of (1 + 2ε) to the left and

†For simplicity, we allow zero weights on the edges, since there does not exist any s − t path with zero total cost or

delay. This can be easily removed by appropriate perturbation of the weights.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 28

(1 + 2ε) above lj . Therefore, any two clusters are “(1 + ε)-far” from each other. Thus, any ε-Pareto

set for this instance must contain at least k points.

As in the case of k = 1, for all j ∈ [k], the solution points lj and rj (1 + ε)-cover the (solution

points in the) jth cluster. Thus, 2k solution points suffice to (1 + ε)-cover the feasible set. Also,

the jth cluster is (1 + ε)-covered by one point if and only if there exists an s − t path in H with

coordinates mj =
(

(1+ε)Sn

(1+2ε)2(j−1) , (1 + ε)Sn(1 + 2ε)2(j−1)
)

. Similarly, this holds if and only if the

original Partition instance is a Yes instance. So, if there exists a partition of the set A, the smallest

ε-Pareto set contains exactly k points. Otherwise, the smallest such set must contain 2k points.

To finish the proof, we observe that there exists an ε-Pareto set with (at most) 2k − 1 points if

and only if there exists an ε-Pareto set with exactly k points. Indeed, the former statement holds if

and only if some cluster is (1 + ε)-covered by one point, i.e. if and only if there exists an s− t path

in H with coordinates mj for some j ∈ [k], which in turn holds if and only if the original Partition

instance is a Yes instance. The latter holds if and only if the smallest ε-Pareto set contains exactly k

points.

b. In the BST problem, we are given an undirected graph with positive rational “costs” and

“delays” on each edge. The set of feasible solutions is the set of spanning trees; the goal is to

minimize cost and delay. For k = 1, the NP-hardness proof for the BST problem is identical to the

k = 1 proof for the BSP problem (since any s − t path in the “basic” graph G is also a spanning

tree of G and vice-versa).

For k > 1, we again use G as a basic building block to construct an instance of BST whose

Pareto set consists of k clusters that are “(1 + ε)-far” from each other. We give a construction that

works for any fixed k and for sufficiently small ε; in fact ε = O(1/k) suffices. Consider the graphG′

obtained from G by adding one node v0 connected to v1 with k parallel edges gi, i ∈ [k]. Subtract

the value S from all the weights of G and set: c(gi) =
{

2− (1 + 2ε)2i
}
Sn, d(gi) = (1 + 2ε)2iSn.

Intuitively, these edges play the role of offsets. Clearly, as long as (1 + 2ε)2k < 2, all the weights

are in the interval (0, 2Sn).

A spanning tree T of G′ consists of an edge gi for some i ∈ [k] and a path P from v1 to

vn+1. Every edge gi satisfies c(gi) + d(gi) = 2Sn, and every path P from v1 to vn+1 satisfies

c(P)+d(P) = 2εSn. Thus, all the solution points (spanning trees) T lie on the line c(T)+d(T) =

2(1 + ε)Sn.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 29

x = c (s - t path)

y
=

 d
 (

s
 -

t
p
a
t
h
)

Partition

Paths

1
r

1
m

1
l

1
st
 cluster

 2
nd

 cluster

k-th

cluster

...

detail

2
l

2
m

2
r

k
r

k
l

k
m

Figure 3.3: Pareto set for graph H of Theorem 3.2.2.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 30

The Pareto set of G′ consists of k clusters, where the i-th cluster, i ∈ [k], contains all the

spanning trees that consist of the edge gi and a path from v1 to vn+1. We claim that the k clusters

are “(1 + ε)-far” from each other, i.e. no point of any cluster (1 + ε)-covers any point of another

cluster. The leftmost point of the i-th cluster is li = (c(gi), d(gi) + 2εSn) and the rightmost point is

ri = (c(gi) + 2εSn, d(gi)). To show the claim, it suffices to show that x(li) > (1 + ε)x(ri+1) and

that y(ri+1) > (1+ε)y(li). The first inequality is equivalent to [2−(1+2ε)2i]Sn > (1+ε)[2−(1+

2ε)2i+2 +2ε]Sn, which can be rewritten as [(1+ε)(1+2ε)2−1](1+2ε)2i > 4ε+2ε2; the inequality

is clearly true since (1 + ε)(1 + 2ε)2− 1 > 4ε+ 2ε2. The second statement, y(ri+1) > (1 + ε)y(li),

follows from the valid inequality (1 + 2ε)2 > (1 + ε)(1 + 2ε).

We now claim that the solution points li and ri suffice to (1 + ε)-cover the i-th cluster. To

show this, it suffices to see that the (solution) point with y-coordinate y(li)/(1 + ε) lies to the right

of the (solution) point with x-coordinate x(ri)/(1 + ε). Indeed, since all feasible points q satisfy

x(q) + y(q) = 2(1 + ε)Sn, the previous statement amounts to verifying that 2(1 + 2ε)Sn =

x(ri) + y(li) ≤ 2(1 + ε)2Sn. Hence, two points suffice for each cluster and therefore there always

exists an ε-Pareto set with 2k points.

Now, suppose that there is one point q that covers all the points in the i-th cluster. Then q

must have x(q) ≤ (1 + ε)x(li) = (1 + ε)c(gi) and y(q) ≤ (1 + ε)y(ri) = (1 + ε)d(gi). Since

x(q) + y(q) = 2(1 + ε)Sn = (1 + ε)[c(gi) + d(gi)], the point q must have coordinates exactly

((1 + ε)c(gi), (1 + ε)d(gi)). Such a point exists if and only if there exists a subset of A with sum

(1 + 2ε)2iS/2. Hence, there exists an ε-Pareto set with k points if and only if there exist k subsets

of A with sums (1 + 2ε)2iS/2, i ∈ [k].

To complete the proof, we use the fact that the following variant of the Subset Sum problem is

NP-hard: Given A = {a1, a2, . . . , an} with the property that (i) either there exist k subsetsAi ⊆ A,

i ∈ [k], such that
∑

x∈Ai x = γiS/2 or (ii) no such subset exists, decide which one of the two

cases holds (for any fixed integer k and rational γ > 1 such that γk < 2). (This can be shown by a

reduction from the Partition problem.) Therefore, it is NP-hard to decide if the smallest ε-Pareto set

for the instance has k points or 2k points are needed and the proof is complete. �

Remark 3.2.3. For k = 1 the theorem says that it is NP-hard to decide if one point suffices or

we need at least 2 points for an ε-approximation. We proved that the theorem holds also for more

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 31

general k to rule out additive and asymptotic approximations. We can easily modify the proof so

that the graphs in the reductions are simple. For the BSP problem, this can be achieved by inserting

a new (“dummy”) node in the “middle” of each parallel edge (subdividing the weights arbitrarily).

For the BST problem, this does not suffice, because all the additional nodes must be covered (by

a spanning tree). Let wi be the node inserted in the middle of ei = (vi, vi+1). The problem is

solved by setting c((vi, wi)) = d((vi, wi)) = 0, c((wi, vi+1)) = c(ei) and d((wi, vi+1)) = d(ei).

By scaling the weights of the Partition instance we can see that the NP-hardness holds even in the

case where all the edge weights are restricted to be positive integers. Similar hardness results can

be shown for several other related problems (see Section 3.2.4).

3.2.3 Two Objectives Algorithm

We have a bi-objective problem with an associated Restricted routine for the y-objective that runs in

polynomial (or fully polynomial) time. We are given an instance and an ε, and we wish to construct

an ε-Pareto set of as small size as possible. In this subsection, we present a generic algorithm that

guarantees ratio 2. By the result of the previous subsection, this factor is optimal. Recall that the

algorithm in [VY] works for all problems in MPTAS and is a factor 3 approximation. (The analysis

of the latter algorithm is tight for the class of problems considered here.) In Section 3.2.3.1, we

show that a straightforward greedy approach cannot guarantee a ratio better than 3 in our setting.

We next make a crucial observation that is exploited in Section 3.2.3.2 to achieve the optimal factor.

3.2.3.1 The Greedy Approach

We remark that if the underlying problem has polynomial time exact Restricted routines for both

objectives (i.e. Restrictδ for δ = 0), then we can efficiently compute the optimal ε-Pareto set by a

simple greedy algorithm. The algorithm is similar to the one given in [KP, VY] for the (special)

case where all the solution points are given explicitly in the input. We denote by xmin, ymin the

minimum values of the objectives in each dimension. The greedy algorithm proceeds by iteratively

selecting points q1, . . . , qk in decreasing x (increasing y) as follows: We start by computing a point

q′1 having minimum y coordinate among all feasible solutions (i.e. y(q′1) = ymin); q1 is then selected

to be the leftmost solution point satisfying y(q1) ≤ (1 + ε)y(q′1). During the jth iteration (j ≥ 2)

we initially compute the point q′j with minimum y-coordinate among all solution points s having

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 32

x(s) < x(qj−1)/(1 + ε) and select as qj the leftmost point which satisfies y(qj) ≤ (1 + ε)y(q′j).

The algorithm terminates when the last point selected (1 + ε)-covers the leftmost solution point(s)

(i.e. the point(s) q having x(q) = xmin). It follows by an easy induction that the set {q1, q2, . . . , qk}

is an ε-Pareto set of minimum cardinality. (This exact algorithm is applicable to bi-objective linear

programming and all problems reducible to it, for example bi-objective flows, the bi-objective global

min-cut problem [AZ] and several scheduling problems [CJK]. For these problems we can compute

an ε-Pareto set of minimum cardinality.)

If we have approximate Restricted routines, one may try to modify the greedy algorithm in a

straightforward way to take into account the fact that the routines are not exact. However, as shown

below, this modified greedy algorithm is suboptimal, in particular it does not improve on the factor

3 that can be obtained from the general GAP routine. More care is required to achieve a factor 2,

matching the lower bound.

Suppose that we have a (fully) polynomial Restrictδ routine (even for both objectives). Consider

the following scheme, where δ is the “uncertainty parameter” - δ < ε, but 1/δ must be polynomially

bounded in the size of the input and 1/ε, so that the overall algorithm runs in polynomial time:

Algorithm Greedy

Compute ymin and xmin.

ȳ1 = ymin(1 + ε);

q1 = Restrictδ(x, y ≤ ȳ1);

Q = {q1}; i = 1;

While (xmin < x(qi)/(1 + ε)) do

{ q′i+1 = Restrictδ(y, x < x(qi)/(1 + ε));

ȳi+1 = (1 + ε) ·max{ȳi, y(q′i+1)/(1 + δ)};

qi+1 = Restrictδ(x, y ≤ ȳi+1);

Q = Q ∪ {qi+1};

i = i+ 1; }

Return Q.

Table 3.1: Pseudo-code for the greedy algorithm.

Since the Restricted routines are now approximate, in order to guarantee that the output set of

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 33

points is an ε-Pareto set, we had to appropriately modify the algorithm based on the parameter δ.

More specifically, note that the point q′i+1 can have y-coordinate up to (1 + δ) times the minimum

y over all points s satisfying x(s) < x(qi)/(1 + ε). In other words, there may exist a solution

point s̃ satisfying x(s̃) < x(qi)/(1 + ε) and y(s̃) = y(q′i+1)/(1 + δ). (The algorithm has “no way

of knowing this” unless it uses a value of δ with 1/δ exponential in the size of the input.) This

“uncertainty” forces the algorithm to select as point qi+1 the leftmost point that satisfies y(qi+1) ≤

(1 + ε)y(q′i+1)/(1 + δ). Due to this “weakness”, we have the following:

Theorem 3.2.4. For any δ > 0, with 1/δ polynomial in the size of the input and 1/ε, there exist

instances on which the greedy algorithm above outputs a set Q such that |Q| = 3k − 1, where

k = OPTε.

Proof. Denote by P ∗ε = {p∗1, . . . , p∗k} the optimal set, where its points p∗i , i ∈ [k] are ordered

in decreasing order of their x-coordinate, and Q = {q1, . . . , qr} the set selected by the greedy

algorithm. By exploiting the uncertainty introduced by the parameter δ, we describe an adversarial

scenario such that r = 3k − 1.

The idea is the following: Consider the call q′i+1 = Restrictδ(y, x < x(qi)/(1 + ε)). By

definition, we have ỹ ≤ y(q′i+1) ≤ (1+δ)ỹ, where ỹ = min{y(s) | x(s) < x(qi)/(1+ε)}. Suppose

that the routine returns a point q′i+1 satisfying ỹ = y(q′i+1). Call this condition (†). If q′i+1 satisfies

this condition, the optimal point p∗j (1+ε)-covering q′i+1 can have y-coordinate up to (1+ε)y(q′i+1),

while the algorithm is forced to select a point qi+1 with y-value at most (1 + ε)y(q′i+1)/(1 + δ).

We refer the reader to Figure 3.4 for an illustration. In the instance presented there, the rightmost

optimal point p∗1 (1 + ε)-covers all the solution points that are (1 + ε)-covered by the set {q1, q2},

while, for j ≥ 2, the optimal point p∗j (1+ε)-covers all the solution points that are (1+ε)-covered by

the set {q3j , q3j+1, q3j+2}. This proves the desired claim. In the following, we explain the situation

in detail.

Consider the first point q1 ∈ Q selected by the algorithm. By the definition of the Restricted

routine and the fact that q′1 must be (1+ε)-covered by p∗1, it follows that x(p∗1) ≥ x(q1)/(1+δ). Now

suppose that the following scenario occurs: x(p∗1) = x(q1)/(1+δ), x(q1)/[(1+ε)(1+δ)] ≤ x(q2) <

x(q1)/(1 + ε) and there are no solutions with x-coordinate in the interval
[
x(q2)/(1 + ε), x(q2)

)
.

Then, the point p∗1 (1 + ε)-covers all solutions that are (1 + ε)-covered by the set {q1, q2}. Notice

that the algorithm only “loses” one additional point here; we have that x(q2) < x(p∗1). This is due

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 34

x

y

1
y

3
y

1
q

1+ ε

2
q

3
q

4
q′

4
q

3
q′

min
x

min
y

1+δ

1
p

∗
2

p
∗5

q

…

1+ ε
5

q′

1+δ2
q′

1
q′

2
y

4
y

5
y

…

…

Figure 3.4: Illustration of the worst-case performance of the greedy approach. There are no solution

points in the shaded region.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 35

to the fact that we can exactly compute the minimum y-coordinate. However, since this does not

hold for the next iterations, the algorithm can “lose” two additional points for each optimal point.

Now suppose that the points {p∗2, q3, q
′
3, q4, q

′
4} satisfy the following scenario: q′3 satisfies con-

dition (†), y(q3) = [(1 + ε)/(1 + δ)]y(q′3), y(q′4) = (1 + δ)y(q3), x(q4) = (1 + δ)x(p∗2) and

y(p∗2) = y(q′4). It is easy to see that these conditions are simultaneously realizable. (Observe that

p∗2 (1 + ε)-covers q′3.) Finally, if x(q4)/[(1 + ε)(1 + δ)] ≤ x(q5) < x(q4)/(1 + ε) and there are no

solutions with x-coordinates in the interval
[
x(q5)/(1 + ε), x(q5)

)
, the point p∗2 (1 + ε)-covers all

the solutions (1 + ε)-covered by the set {q3, q4, q5}.

By replicating the above described configuration, it follows inductively that p∗i+1 (1 + ε)-covers

all the solutions (1 + ε)-covered by {q3i, q3i+1, q3i+2}. This completes the proof. �

In fact, one can show that the greedy algorithm guarantees a factor 3, i.e. the above described

adversarial scenario represents a worst-case instance for the algorithm. Let us now try to understand

why the greedy approach fails to guarantee a factor 2 in the aforementioned scenario. The problem

is that, due to the uncertainty introduced by δ, the point p∗2 can lie arbitrarily to the left of q3. Thus,

the only invariant that the greedy algorithm can guarantee is x(q4) ≤ (1 + δ)x(p∗2).

We can overcome this obstacle by exploiting an additional structural property of the consid-

ered class of bi-objective problems. In particular, our generic algorithm will also use a polyno-

mial routine for the following Dual Restricted problem (for the x-objective): Given an instance,

a (rational) bound D and δ > 0, either return a solution s̃ satisfying y (s̃) ≤ (1 + δ)D and

x (s̃) ≤ min {x(s) over all solutions s having y(s) ≤ D} or correctly report that there does not

exist any solution s such that y (s) ≤ D. Similarly, we drop the instance from the notation and

use DualRestrictδ (x, y ≤ D) to denote the solution returned by the corresponding routine. If the

routine does not return a solution, we will say that it returns NO. We say that the corresponding

routine runs in polynomial time (resp. fully polynomial time) if its running time is polynomial in

|I| and |D| (resp. |I|, |D|, |δ| and 1/δ).

The following lemma establishes the fact that any bi-objective problem that possesses a (fully)

polynomial Restricted routine for the one objective, also possesses a (fully) polynomial Dual Re-

stricted routine for the other.

Lemma 3.2.5. For any bi-objective optimization problem, the problems Restrictδ (y, ·) and DualRestrictδ (x, ·)

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 36

are polynomially equivalent.

Proof. The proof of (both directions of) this equivalence uses binary search on the range of values

of one objective with an application of the polynomial routine (for the other objective) at each step

of the search. Let m be an upper bound on the number of bits in the objectives; recall that m is

polynomially bounded in the size of the instance. Observe that (the absolute value of) the minimum

possible difference between the objective values of any two solutions is at least 2−2m.

First, we argue that a polynomial time algorithm for Restrictδ(y, x ≤ C) can be used as a black

box to obtain a polynomial time algorithm for DualRestrictδ(x, y ≤ D).

Given an upper bound D and a (rational) error tolerance δ > 0, the following algorithm com-

putes the function DualRestrictδ(x, y ≤ D):

1. If Restrictδ(y, x ≤ 2m) returns a solution s0 having y(s0) > (1+ δ)D or returns “NO”, then

output “NO”.

2. Otherwise, do a binary search on the parameterC in the range [2−m, 2m] calling Restrictδ(y, x ≤

C) in each step, until you find a value C̃ such that:

(a) Restrictδ(y, x ≤ C̃) returns a solution s̃ satisfying x(s̃) ≤ C̃ and y(s̃) ≤ (1 + δ)D.

(b) Restrictδ(y, x ≤ C̃ − 2−2m) either returns a solution s′ having x(s′) ≤ C̃ − 2−2m and

y(s′) > (1 + δ)D or returns “NO”.

Output the solution s̃.

The number of calls to the routine Restrictδ(y, x ≤ C) is Θ(m), so the overall algorithm runs

in polynomial time. It remains to argue about the correctness. In case 1, either there are no feasible

solutions or all solutions have y coordinate strictly greater than D. In case 2, all solutions s having

x(s) ≤ C̃ − 2−2m also satisfy y(s) > D. Since there are no solutions with x coordinate strictly

between x(s̃) and C̃ − 2−2m, it follows that C̃ ≤ min{x over all solution points s having y(s) ≤

D}.

Conversely, given an upper bound C and a (rational) error tolerance δ > 0, the following

algorithm computes the function Restrictδ(y, x ≤ C) using as a black box an algorithm for

DualRestrictδ (x, y ≤ D):

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 37

1. If DualRestrictδ(x, y ≤ 2m) returns a solution s0 having x(s0) > C or returns “NO”, then

output “NO”.

2. Otherwise, do a binary search on the parameterD in the range [2−m, 2m] calling DualRestrictδ(x, y ≤

D) in each step, until you find a value D̃ such that:

(a) DualRestrictδ(x, y ≤ D̃) returns a solution s̃ satisfying x(s̃) ≤ C and y(s̃) ≤ (1 +

δ)D̃.

(b) DualRestrictδ(x, y ≤ D̃ − 2−2m) either returns a solution s′ having x(s′) > C (and

y(s′) ≤ (1 + δ)(D̃ − 2−2m) or returns “NO”.

Output the solution s̃.

The justification is similar. The number of calls to the routine DualRestrictδ(x, y ≤ D) is

Θ(m), so the overall running time is polynomial. For the correctness, in case 1, either there are no

feasible solutions or all solutions have x coordinate strictly greater than C. In case 2, all solutions

s having y(s) ≤ D̃ − 2−2m also satisfy x(s) > C. Since there are no solutions with y coordinate

strictly between y(s̃) and D̃−2−2m, it follows that D̃ ≤ min{x over all solution points s having x(s) ≤

D}. �

3.2.3.2 Algorithm Description

We first give a high-level overview of the 2-approximation algorithm. The algorithm iteratively

selects a set of solution points {q1, . . . , qr} (in decreasing x) by judiciously combining the two

routines. The idea is, in addition to the Restricted routine (for the y-coordinate), to use the Dual

Restricted routine (for the x-coordinate) in a way that circumvents the problems previously iden-

tified for the greedy algorithm. More specifically, after computing the point q′i in essentially the

same way as the greedy algorithm, we proceed as follows. We select as qi a point that: (i) has

y-coordinate at most (1 + ε)y(q′i)/(1 + δ) and (ii) has x-coordinate at most the minimum x over

all solutions s with y(s) ≤ (1 + ε)y(q′i)/(1 + δ)2 for a suitable δ. This can be done by a call

to the Dual Restricted routine for the x-objective. Intuitively this selection means that we give

some “slack” in the y-coordinate to “gain” some slack in the x-coordinate. Also notice that, by

selecting the point qi in this manner, there may exist solution points with y-values in the interval

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 38

Algorithm 2–Approximation

If Restrictδ0←1(y, x ≤ 2m) = NO then halt.

q′1 = Restrictδ(y, x ≤ 2m);

qleft = DualRestrictδ0←1(x, y ≤ 2m); xmin = x(qleft);

ȳ1 = y(q′1)(1 + δ);

q1 = DualRestrictδ(x, y ≤ ȳ1);

x̄1 = x(q1)/(1 + ε);

Q = {q1}; i = 1;

While (x̄i > xmin) do

{ q′i+1 = Restrictδ(y, x < x̄i);

ȳi+1 = [(1 + ε)/(1 + δ)] ·max{ȳi, y(q′i+1)/(1 + δ)};

qi+1 = DualRestrictδ(x, y ≤ ȳi+1);

x̄i+1 = x(qi+1)/(1 + ε);

Q = Q ∪ {qi+1};

i = i+ 1; }

Return Q.

Table 3.2: Pseudo-code for factor-2 algorithm.

((1 + ε)y(q′i)/(1 + δ)2, (1 + ε)y(q′i)/(1 + δ)] whose x-coordinate is arbitrarily smaller than x(qi).

In fact, the optimal point (1 + ε)-covering qi can be such a point. However, it turns out that this is

sufficient for our purposes and, if δ is chosen appropriately, this scheme can guarantee that the point

q2i lies to the left (or has the same x-value) of the i-th rightmost point of the optimal solution. We

now proceed with the formal description of the algorithm. In what follows, the error tolerance is

set to δ .
= 3
√

1 + ε− 1 (≈ ε/3 for small ε). (For the case that the Restricted routine is available for

both objectives, we have a variant of this algorithm that achieves a ratio of 2 and is slightly more

efficient in the sense that it uses error tolerance δ′ .=
√

1 + ε− 1.) If 3
√

1 + ε is not rational, we let

δ be a rational that approximates 3
√

1 + ε − 1 from below, i.e. (1 + δ)3 ≤ (1 + ε), and which has

representation size |δ| = O (|ε|) (i.e. number of bits in the numerator and denominator). The set of

points computed by the algorithm is shown in Figure 4.1.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 39

x

y

1
q′

1+δ 1
y

3
y

2
y

4
y

1
q

1+ ε
2

q′

2
q

3
q

4
q′

4
q

3
q′

1x2x3x

4
min

x x≥

min
y≤

Figure 3.5: Schematic performance of the factor-2 algorithm. The scale is logarithmic in both

dimensions. There are no solutions in the shaded region.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 40

3.2.3.3 Algorithm Analysis

Recall that 2m is an upper bound on the values of the objectives. Thus, if Restrictδ0←1 (y, x ≤ 2m) =

NO, there are no feasible solutions, in which case we can just terminate the algorithm. So, we can

assume that the solution set is nonempty. In this case, the subroutine calls of lines 2 and 3 indeed

return a solution; moreover, (i) the solution point qleft has minimum x-value among all feasible

solutions and (ii) q′1 has y-value at most (1 + δ)ymin. Now observe that ymin ≤ ȳi ≤ ȳi+1 and

x̄i > xmin for all the values of i for which the body of the while loop is executed. It is thus easy to

see that each subroutine call returns a point; so, all the points are well-defined.

Let Q = {q1, q2, . . . , qr} be the set of solution points produced by the algorithm. We will prove

that the set Q is an ε-Pareto set whose size is at most twice the optimum. We note the following

simple properties.

Fact 3.2.6. 1. For each i ∈ [r − 1] it holds (i) x(q′i+1) < x(qi)/(1 + ε) and (ii) for each solution

point t with x(t) < x(qi)/(1 + ε), we have y(t) ≥ y(q′i+1)/(1 + δ).

2. For each i ∈ [r] it holds (i) y(qi) ≤ (1 + δ)ȳi and (ii) for each solution point t with y(t) ≤ ȳi we

have x(t) ≥ x(qi).

Proof. The properties are just restatements of the definition of the two subroutines. �

We can now prove the following lemmata (all properties used below refer to the above fact).

Lemma 3.2.7. The x coordinates of the points q1, q2, . . . , qr of Q form a strictly decreasing se-

quence.

Proof. Consider two successive elements qi, qi+1 of Q. For their x coordinates we will argue that

x(qi+1) < x(qi)/(1 + ε). First observe that y(q′i+1) ≤ ȳi+1. So, property 2-(ii) implies that

x(qi+1) ≤ x(q′i+1). Now from property 1-(i) we get x(q′i+1) < x(qi)/(1 + ε) and the argument is

complete. �

The following lemma shows that Q is indeed an ε-Pareto set.

Lemma 3.2.8. 1. The point q1 (1 + ε)-covers all of the solution points that have x-coordinate at

least x(q1)/(1 + ε).

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 41

2. For each i ∈ [r] \ {1} the point qi (1 + ε)-covers all of the solution points that have their x-

coordinate in the interval
[
x(qi)/(1 + ε), x(qi−1)/(1 + ε)

)
.

3. There are no solution points with x-coordinate smaller than x(qr)/(1 + ε).

Proof. 1. Let t be a solution point with x(t) ≥ x(q1)/(1 + ε). We need to show that t is (1 + ε)-

covered by q1. It clearly suffices to argue that y(t) ≥ y(q1)/(1 + ε). Indeed, by property 2-(ii) we

have y(q1) ≤ (1 + δ)ȳ1 = (1 + δ)2y(q′1) and the definition of q′1 implies that y(t) ≥ y(q′1)/(1 + δ),

for any solution point t. By combining these facts we get that for any solution point t it holds

y(t) ≥ y(q1)/(1 + δ)3 ≥ y(q1)/(1 + ε).

2. Let t be a solution point satisfying x(qi)/(1 + ε) ≤ x(t) < x(qi−1)/(1 + ε); we will show that

t is (1 + ε)-covered by qi or equivalently that y(t) ≥ y(qi)/(1 + ε). The proof is by contradiction.

Suppose that there exists such a point t with y(t) < y(qi)/(1 + ε). By property 2-(i) and the

definition of ȳi this implies y(t) < max{ȳi−1, y(q′i)/(1 + δ)}. Now since x(t) < x(qi−1)/(1 + ε),

property 1-(ii) gives y(t) ≥ y(q′i)/(1 + δ). Furthermore, since x(t) < x(qi−1), by property 2-(ii) it

follows that y(t) > ȳi−1. This provides the desired contradiction.

3. The termination condition of the algorithm is x(qr)/(1 + ε) ≤ xmin. �

Remark 3.2.9. We show in Lemma 3.2.10 below that the set Q is of cardinality |Q| ≤ 2OPTε.

So, the algorithm could output this set of points. However, we observe that the set Q may contain

“redundant” points: The y-coordinates of the points q1, . . . , qr do not necessarily form an increasing

sequence. In fact, if y(qi+1) ≤ (1 + δ)ȳi, it may happen that y(qi+1) ≤ y(qi) (in which case the

point yi is redundant). (Note however that if y(qi+1) > (1 + δ)ȳi, then by property 2-(i) we

get y(qi+1) > y(qi).) This observation can be further exploited for a post-processing step. For

example, if y(q2i) ≤ (1 + δ)ȳ2i−1, we can safely discard the point q2i−1 as implied by (the proof

of) Lemma 3.2.8.

We now bound the size of the set of points Q in terms of the size of the optimal ε-Pareto set.

Lemma 3.2.10. Let P ∗ε = {p∗1, p∗2, . . . , p∗k} be the optimal ε-Pareto set, where its points p∗i , i ∈

[k], are ordered in (strictly) increasing order of their y- and (strictly) decreasing order of their

x-coordinate. Then, |Q| = r ≤ 2k.

Proof. We prove the following:

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 42

Claim 3.2.11. If the algorithm selects a solution point q2i−1 (i.e. if 2i−1 ≤ r), then there must exist

a point p∗i in P ∗ε (i.e. it holds i ≤ k) and if the algorithm selects a point q2i, then x(p∗i) ≥ x(q2i).

The desired result follows directly from this. The claim is proved by induction on i.

Basis (i = 1). The first statement of the claim trivially holds. To show the validity of the

second statement observe that for the rightmost point of P ∗ε , we must have y (p∗1) ≤ y(q′1)(1 + ε) =

ȳ1(1 + ε)/(1 + δ) ≤ ȳ2. The first inequality holds since the solution point q′1 must be (1 + ε)-

covered by P ∗ε and in particular by the point of P ∗ε having the minimum y-coordinate. The two

other inequalities follow from the definitions of ȳ1 and ȳ2. Now an application of property 2-(ii)

gives x(p∗1) ≥ x(q2) and the base case is proved.

Induction step. Suppose that the claim holds for index i − 1 (more specifically that x(p∗i−1) ≥

x(q2i−2)); we will prove it for i. We will prove each statement in turn.

Assume first that the algorithm selects a point q2i−1 (i.e. that 2i − 1 ≤ r). We will show

that P ∗ε contains a point p∗i (i.e. that i ≤ k). By the termination condition of the algorithm, our

assumption implies that x(q2i−2) > (1 + ε)xmin. Therefore, by the induction hypothesis it follows

that x(p∗i−1) > (1 + ε)xmin; that is, point p∗i−1 does not (1 + ε)-cover the leftmost solution point,

which means there must exist a point p∗i in the optimal set.

Now assume that the algorithm selects a point q2i. We will show that x(p∗i) ≥ x(q2i). First note

that by property 1-(i) and the induction hypothesis x(q′2i−1) < x(p∗i−1)/(1 + ε). So, the point p∗i−1

does not (1 + ε)-cover the point q′2i−1 in the x-coordinate. Clearly, the latter point must be (1 + ε)-

covered by a point in P ∗ε . Since the p∗j ’s are sorted in decreasing order of their x-coordinates, we

conclude that p∗i is the only eligible point for that purpose, i.e. q′2i−1 must be must (1 + ε)-covered

by p∗i . To complete the argument, we need the following fact:

Fact 3.2.12. There does not exist any solution point t with x(t) < x(q2i) such that t (1 + ε)-covers

point q′2i−1.

Proof. We want to prove that for all solutions t having x(t) < x(q2i) it holds y(t) > (1+ε)y(q′2i−1).

For such a solution point t we have y(t) > ȳ2i ≥ ȳ2i−1(1 + ε)/(1 + δ) ≥ (1 + ε)y(q′2i−1). The

latter inequalities, in the order they appear, follow by applying property 2-(ii) and the definition of

ȳj (for j = 2i− 1, 2i). �

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 43

The above fact implies directly that x(p∗i) ≥ x(q2i) and the proof is complete. �

Thus far, we have proved that the set Q is an ε-Pareto set of size |Q| ≤ 2OPTε. We now

analyze the running time of the algorithm. Let k be the number of points in the smallest ε-Pareto

set, k = OPTε. The algorithm involves r ≤ 2k iterations of the while loop; each iteration involves

two calls to the subroutines. Therefore, the total running time is bounded by 4k subroutine calls. In

summary, we proved the following theorem.

Theorem 3.2.13. The above described algorithm computes a 2-approximation to the smallest ε-

Pareto set in time O(OPTε) subroutine calls, where 1/δ = O(1/ε).

3.2.4 Applications

Our result can be applied to all of the problems which have a polynomial (or fully polynomial)

time Restricted routine for one of the two objectives. It should be stressed that our algorithm is

quite general; it does not assume for example linearity of the objectives. Applications include

the shortest path problem [Han, Wa, ESZ, LR] and generalizations [EV, GR+, CX2, VV], cost-time

trade-offs in query evaluation [PY2], matching [BBGS], spanning trees (and more generally matroid

problems, see below) [GR, HL] and related problems [CX]. The aforementioned problems possess

a polynomial Restricted routine for both objectives. In essence, for most of the aforementioned

problems (with [PY2] being a notable exception), the two objectives are “the same” and we can

efficiently optimize each of them separately. For several other problems [ABK1, ABK2, CJK,

DJSS], the Restricted routine is available for one objective only (because it is NP-hard to separately

optimize this objective). An example is the following classical scheduling problem: We are given

a set of n jobs and a fixed number m of machines. Executing job j on machine i requires time

pij and incurs cost cij . We are interested in the trade-off between makespan and cost. Minimizing

the makespan is NP-hard, even for m = 2; hence, the Dual Restricted problem for this objective

(equivalently, the Restricted problem for the cost objective) does not have a PTAS. If m is fixed,

a fully polynomial time Dual Restricted routine for the cost objective is given in [ABK1]. (By

Lemma 3.2.5 this implies an FPTAS for the Restricted problem for the makespan objective.)

For the bi-objective shortest path problem, a polynomial (resp. fully polynomial) Restricted

routine corresponds to a polynomial (resp. fully polynomial) time approximation scheme for the

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 44

Restricted Shortest Path problem: given a bound on the cost of the path, minimize the delay of the

path subject to the bound on the cost. This problem has been studied in a number of papers [Has,

Wa, LR, ESZ]. The problem is NP-hard and has a fully polynomial time approximation scheme.

The best current algorithms approximate the optimal restricted path within factor 1 + ε in time

O(en/ε) for acyclic (directed) graphs [ESZ], and time O(en(log log n+ 1/ε) for general (directed)

graphs [LR], where n is the number of nodes and e is the number of edges. Moreover, the Dual

Restricted problem also admits an FPTAS with the same time complexity. Thus, our algorithm runs

inO(en(log log n+1/ε)OPTε) time for general graphs andO(enOPTε/ε) for acyclic graphs. The

time complexity is comparable or better than previous algorithms [Han, Wa, TZ], which furthermore

do not provide any guarantees on the size.

For the bi-objective spanning tree problem a polynomial Restricted routine corresponds to a

polynomial time approximation scheme for the Constrained Spanning Tree (CST) problem [GR]:

given a bound on the cost of the tree, minimize the weight of the tree subject to the bound on

the cost. This problem is also NP-hard and is known to have a polynomial time approximation

scheme [GR, HL]. (In fact, the aforementioned papers provide a PTAS for the more general prob-

lem of finding a minimum cost base of a matroid subject to a bound on the total length, as long

as there is a polynomial time independence oracle for the matroid.) The best current algorithm

for the problem [HL] has running time O((1/ε)1/εn3). As a corollary, our generic algorithm can

compute a 2-approximation to the smallest ε-Pareto set in time O((1/ε)1/εn3OPTε). Whether such

a 2-approximation can be computed in fully polynomial time is conditional on the existence of an

FPTAS for the CST problem (which is an interesting open question). In contrast, by the results of

[PY1, VY], a 3-approximation can be computed in fully polynomial time.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 45

3.3 d Objectives

The results in this section use the GAP routine and thus apply to all problems in MPTAS.

3.3.1 Approximation of the optimal ε-Pareto set

Recall that for d ≥ 3 objectives we are forced to compute an ε′-Pareto set, where ε′ > ε, if we are

to have a guarantee on its size [VY]. For any ε′ > ε, a logarithmic approximation for the problem is

given in [VY], by a straightforward reduction to the Set Cover problem. We can sharpen this result,

by exploiting additional properties of the corresponding set system.

Theorem 3.3.1. 1. For any ε′ > ε there exists a polynomial time generic algorithm that computes

an ε′-Pareto set Q such that |Q| ≤ O
(
d log OPTε

)
OPTε. The algorithm uses O((m/δ)d) GAPδ

calls, where 1/δ = O(1/(ε′ − ε)) .

2. For d = 3, the algorithm outputs an ε′-Pareto set Q satisfying |Q| ≤ cOPTε, where c is a

constant.

Definition 3.3.2. Consider the following problemQ(P, ε): Given a set of n points P ⊆ Rd+ as input

and ε > 0, compute the smallest ε-Pareto set of P .

It should be stressed that, by definition, the set of points P is given explicitly in the input. (Note

the major difference with our setting: for a typical multiobjective problem there are exponentially

many solution points and they are not given explicitly.) This problem can be solved in linear time

for d = 2 by a simple greedy algorithm. For d = 3 it is NP-hard and can be approximated within

some (large) constant factor c [KP]. If d is arbitrary (i.e. part of the input, e.g. d = n), the problem

is hard to approximate better than within a Ω(log n) factor (unless P = NP) [VY].

The following fact, implicit in [VY], relates the approximability of Q with the problem of

computing a small ε′-Pareto set for a multiobjective problem Π, given the GAP primitive. Let ε > 0

be a given rational number. For any ε′ > ε, we can find a δ > 0 such that 1/δ = O(1/(ε′ − ε))

satisfying 1 + ε′ ≥ (1 + ε)(1 + δ)2.

Lemma 3.3.3. Suppose that there exists an r-factor approximation algorithm for Q. Then, for any

ε′ > ε, we can compute an ε′-Pareto set Q, such that |Q| ≤ rOPTε using O((m/δ)d) GAPδ calls.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 46

Proof. The algorithm proceeds in two phases; in the first phase, we compute a δ-Pareto set, by using

the original algorithm of [PY1] and in the second phase we post-process the points produced by the

latter algorithm by using the r-approximation algorithm for Q as a black box.

For the given instance I ∈ IΠ, let X(I) be the set of d-vectors of values of solutions in the

objective space and fix an optimal ε-Pareto set P ∗ε = P ∗ε (I). Let R be the δ-Pareto set produced in

the first stage. We apply the r-approximation algorithm for Q on input R to produce a set R′ ⊆ R

that (1 + ε)(1 + δ)-covers R. (Since |R| ≤ (m/δ)d−1, it follows that the overall algorithm runs

in polynomial time.) R′ is clearly an ε′-Pareto set for the feasible set X(I). We will argue that

|R′| ≤ rOPTε. Let R∗ denote the smallest (1 + ε)(1 + δ)-cover for R using only points from R;

we have |R′| ≤ r|R∗|. The following simple claim completes the argument:

Claim 3.3.4. |R∗| ≤ OPTε.

Proof. It suffices to show that there exists an (1 + ε)(1 + δ)-cover C for R of cardinality at most

OPTε. Since R is a δ-Pareto set, for any solution point s ∈ X(I), there exists a solution point

r ∈ R that (1 + δ)-covers s. C is constructed as follows: For each s ∈ P ∗ε pick an r ∈ R that

(1 + δ)-covers it. Then, |C| ≤ |P ∗ε | = OPTε. Every point r ∈ R is (1 + ε)-covered by a point

s ∈ P ∗ε , which in turn is (1 + δ)-covered by a point c ∈ C. Therefore, C (1 + ε)(1 + δ)-covers all

points of R. �

�

Part 2 of Theorem 3.3.1 follows immediately from the fact that Q is constant factor approx-

imable for d = 3 [KP] and Lemma 3.3.3. We consider the case of general d in the remainder.

To proceed, we need the following definition.

Definition 3.3.5. A set system is a pair (U,R), where U is a set andR is a collection of subsets of

U . For a set system (U,R), we say that X ⊆ U is shattered by R if for any Y ⊆ X , there exists

a set R ∈ R with X ∩ R = Y . The VC-dimension [VC] of the set system is the maximum size of

any set shattered by R. Let T ⊆ U be a finite set and r ∈ (1,∞) be a parameter. A set N ⊆ T is

called an 1/r-net for (T,R) [HW], if N ∩ S 6= ∅ for all S ∈ R having |S| > |T |/r.

The problemQ(P, ε) can be formulated as a set cover problem as follows: For each point q ∈ P

and ε > 0, define Sq,ε = {x ∈ Rd | q ≤ (1+ε)·x}. Sq,ε is the subset of Rd that is (1+ε)-covered by

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 47

q; it is a closed convex cone in Rd (a translation of the nonnegative orthant by the vector q/(1 + ε)).

For each point r ∈ P , r is (1 + ε)-covered by q if and only if r ∈ Sq,ε. Now consider the set system

F(P, ε) = (P,S(P, ε)), where S(P, ε) = {Pq,ε ≡ P ∩ Sq,ε | q ∈ P}. Clearly, there is a bijection

between set covers of F(P, ε) and ε-Pareto sets of P . We now establish the following:

Lemma 3.3.6. a. For any finite set of points P ⊆ Rd and ε > 0, it holds VC-dim(F(P, ε)) ≤ d.

b. There exists a set of points P such that VC-dim(F(P, ε)) = d.

Proof. a. Let P be a set of points in Rd and ε > 0. We must argue that no subset P ′ ⊆ P of

cardinality d+ 1 can be shattered by S(P, ε). Note that any such set P ′ ⊆ P (of cardinality d+ 1)

contains a point r none of whose coordinates is minimal, that is, a point r such that for all i ∈ [d]

there exists some point qi ∈ P ′ (different from r) with the property (qi)i ≤ ri. We claim that we

cannot “separate” r from the remaining points of P ′ by any convex cone (as defined above). Indeed,

a point that (1+ ε)-covers the qi’s is guaranteed to (1+ ε)-cover r (or equivalently, the “dichotomy”

{qi, i ∈ [d]} cannot be realized).

b. Consider a set P = A ∪ C, where |A| = d and |C| = 2d. Let A = {a1, . . . , ad}. We select

the ai’ s in A as follows: For each i ∈ [d], the ith coordinate of ai is equal to 1 and all the rest are

equal to 1 + 2ε. The set A has two properties: (i) no two of its points (1 + ε)-cover each other and

(ii) for any two points p, q ∈ A, we have argminipi 6= argminiqi. The set C is selected such that

each subset of A is (1 + ε)-covered by some point in C. In particular, let X =
⋃
i∈I(X){ai} be a

subset of A. We add the point cX in C having each coordinate indexed by I(X) equal to 1 + ε and

all the rest equal to 1 + 2ε. Clearly, the point cX (1 + ε)-covers exactly the elements of X . �

For q ∈ P and ε > 0, define SDq,ε = {x ∈ Rd | x ≤ (1 + ε) · q}; the cone SDq,ε is the subset of

Rd that (1 + ε)-covers q. A point r (1 + ε)-covers q if and only if r ∈ SDq,ε. The “dual” set system

of F(P, ε) is defined as FD(P, ε) = (P,SD(P, ε)), where SD(P, ε) = {PDq,ε ≡ P ∩ SDq,ε | q ∈ P}.

In words, the elements are the points of P and for each point q ∈ P we have a set consisting of the

points r ∈ P that (1 + ε)-cover q. An ε-Pareto set of P is equivalent to a hitting set of FD (i.e. a

subset H ⊆ P that has non-empty intersection with every element of SD(P, ε)).

It is well-known [As] that, if a set system has VC-dimension at most d, the VC-dimension of

the dual set system is upper bounded by 2d+1 − 1. However, in our setting, essentially the same

proof as in the previous lemma establishes the following:

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 48

Lemma 3.3.7. For any finite set of points P ⊆ Rd and ε > 0, it holds VC-dim(FD(P, ε)) ≤ d.

This bound is tight.

Proof. Let P be a set of points in Rd and ε > 0. We must argue that no subset P ′ ⊆ P of cardinality

d+ 1 can be shattered by SD(P, ε). Similarly to the previous lemma, any set P ′ ⊂ P of cardinality

d+ 1 contains a point r such that for all i ∈ [d] there exists some point qi ∈ P ′ (qi 6= r) satisfying

(qi)i ≥ ri. We claim that we cannot “separate” r from the remaining points. Indeed, if some point

is (1 + ε)-covered by all the qi’s, then is also (1 + ε)-covered by r. The tightness is similar. �

It is well-known that, for a set system of VC-dimension at most d, we can efficiently construct

an 1/r-net of size s(r) = O(dr log r) [KPW]; this bound is tight in general [PW, KPW]. As

shown in [BG, ERS], for such a set system, there exists a polynomial time s(OPT)/OPT-factor

approximation algorithm for the minimum hitting set problem, where OPT is the cost of the optimal

solution. If we apply this result to the dual set system FD(P, ε) we conclude:

Proposition 3.3.8. Problem Q can be approximated within a factor of O(d log OPTε).

Part 1 of Theorem 3.3.1 follows by combining Lemma 3.3.3 and Proposition 3.3.8.

Remark 3.3.9. If s(r) = O(r), the reduction in [BG, ERS] implies a polynomial time constant factor

approximation algorithm for the corresponding hitting set problem. This is exactly the approach in

[KP]: they show that, for d = 3, FD(P, ε) admits an 1/r-net of size s(r) = O(r) and that such a

net can be efficiently constructed. Note that the constant approximation ratio c implied for set cover

using this approach is identified with the constant hidden in the big-Oh of the net-size s(r). The

corresponding constant in the construction of [KP], itself based on a result of [CV], is quite large

and no good bounds have been calculated for it. A recent result [PR] implies that the dual set system

induced by a finite set of points and translates of an orthant in R3 (a generalization of FD(P, ε))

admits a 1/r-net of size at most 25r (that is efficiently constructible). Hence, for d = 3, problemQ

can be efficiently approximated within a factor of 25 and the constant c in (the second statement of)

Theorem 3.3.1 is at most 25. Improving the value of this constant is an interesting open problem.

3.3.2 The Dual Problem

For a d-objective problem Π with an associated GAP routine, given a parameter k, we want to find

k solution points that provide the best approximation to the Pareto curve, i.e. such that every Pareto

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 49

point is ρ∗-covered by one of the k selected points for the minimum possible ratio ρ∗ = 1 + ε∗.

It was shown in [VY] that for d = 2 the problem is NP-hard but has a PTAS. We show below

(Section 3.3.2.1) that for d = 3 any multiplicative factor for the dual problem is impossible, even

for explicitly given points; we can only hope for a constant power, and only above a certain constant.

In [VY] the dual problem was related to the asymmetric k-center problem, and this was used to

show that (i) for any d, a set of k points can be computed that approximates the Pareto curve with

ratio (ρ∗)O(log∗ k), and (ii) for unbounded d and explicitly given points, it is hard to do much better.

Since the metric ρ for the dual problem is a ratio (multiplicative coverage) versus distance (additive

coverage) in the k-center problem, in some sense the analogue of constant factor approximation for

the Dual problem is constant power. Can we achieve a constant power (ρ∗)c for all problems in

MPTAS with a fixed number d of objectives? We show (Section 3.3.2.2) that the answer is Yes for

d = 3 and provide a conjecture that implies it for general d.

3.3.2.1 Lower Bound

We start by formally defining the dual problem with explicitly given points:

Definition 3.3.10. Consider the problem D(P, k): We are given explicitly a set P of n points in

Rd+ and a positive integer k and we want to compute a subset of P of cardinality (at most) k that

ρ-covers P with minimum ratio ρ.

Let ρ∗ = 1 + ε∗ denote the optimal value of the ratio. Note that problems Q and D are

polynomially equivalent with respect to exact optimization – as opposed to approximation. As

shown in [KP], Q is NP-hard for d ≥ 3; hence, for d ≥ 3, problem D is also NP-hard.

By further exploiting the properties of the aforementioned reduction in [KP], we can show that

problem D is NP-hard to approximate. Before we proceed with the formal statement and proof of

this fact, it will be helpful to give some remarks regarding the notion of “approximate coverage”

in the definition of the approximate Pareto set. Throughout this chapter, our notion of coverage is

multiplicative: for ρ ≥ 1, a point u ∈ Rd+ ρ-covers a point v ∈ Rd+ iff u ≤ ρ · v (coordinate-wise).

Alternatively, one could define the notion of coverage additively: for c ≥ 0, the point u ∈ Rd+
additively c-covers v ∈ Rd+ iff ui ≤ vi + c for all i. A notion of additive c-Pareto set can be

naturally defined using the additive coverage. (Note that with the additive definition of coverage

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 50

Pareto sets and approximate Pareto sets are invariant under translation of the input set, while with

our multiplicative definition they are invariant under scaling.)

On the one hand, the selection of multiplicative metric is standard and more natural in the

context of approximation algorithms. On the other hand, it is essential in our setting in the following

sense: For a (implicitly represented) multiobjective combinatorial optimization problem, the basic

existence theorem of [PY1] (i.e. the fact that there always exists an ε-Pareto set of polynomial

size) is based crucially on the multiplicative coverage. (In fact, it clearly does not hold under the

additive coverage. This, of course, rules out the possibility of efficient algorithms for computing

(any) approximate Pareto set in this context.) However, for the case that the set of points is given

explicitly in the input (i.e. for problems Q and D) the aforementioned obstacle does not occur and

one can select the definition of coverage that is more appropriate for the specific application.

We will denote by logQ and logD the primal and dual problems respectively under additive

coverage. We now try to relate the problem pairs (Q, logQ) and (D, logD) with respect to their

approximability. To this end, we need a couple of more definitions. For two points p, q ∈ Rd+
the ratio distance between p and q is defined by: RD(p, q) = max{maxi(pi/qi), 1}. (The ratio

distance between p and q is the minimum value ρ∗ = 1 + ε∗ of the ratio ρ such that p ρ-covers

q.) The additive distance between p and q is defined by: AD(p, q) = max{maxi(pi − qi), 0}.

(Analogously, the additive distance between p and q is the minimum value c∗ of the distance c such

that p additively c-covers q.) It is easy to see that AD(·, ·) is a directed pseudo-metric.

We claim that the problems Q and logQ are in some sense “equivalent” with respect to ap-

proximability. Indeed, it is easy to see that an r-approximation algorithm for problem Q implies

an r-approximation for problem logQ and vice-versa (by taking logarithms and exponentials of the

coordinates respectively). Suppose for example that there exists a factor r approximation for logQ.

We argue that it can be used as a black box to obtain an r-approximation for Q. Given an instance

(P, ε) of Q, we construct the following instance of logQ: We take the set of points P ′, where P ′

contains a point p′ for every point p ∈ P whose coordinates are the logarithms of the corresponding

coordinates of p. We also take c = log(1 + ε). That is, we ask for the smallest additive c-Pareto set

of P ′. If p′, q′ ∈ P ′ are the images of p, q ∈ P respectively, we have that RD(p, q) = 2AD(p′,q′)

. Hence, there exists a bijection between ε-Pareto sets of P and additive c-Pareto sets of P ′, i.e.

this simple transformation is an approximation factor preserving reduction of Q to logQ. There is

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 51

however a subtle point regarding the bit complexity of the produced instance: the coordinates of the

points in P ′ (and the desired additive coverage c) may be irrational, thus not computable exactly.

We argue that this is not a significant problem below.

Consider an instance (P ′, c) of logQ. (The following remarks also hold for Q and the dual

problems.) Clearly, the feasible solutions to the problem, i.e. the (additive) c-Pareto sets of P ′, do

not depend on the actual coordinates of the points in P ′, but only on the additive distance between

every pair of points. Hence, the only information an (exact or approximate) algorithm for logQ

needs to know about the input instance is the set of pairwise distances. In fact, such an algorithm

does not need an explicit representation of these distances as rational numbers. It is sufficient to

have a succinct representation that allows: (i) efficiently computing a succinct representation of the

sum of two (or more) distances (ii) efficiently comparing any two (sums of) distances and (iii) ef-

ficiently comparing (sums of) distances with c. Now the aforementioned transformation produces

instances (P ′, c) of problem logQ that clearly satisfy these properties (since we have an explicit rep-

resentation of the starting instance (P, ε) ofQ and we take logarithms). Hence, an r-approximation

algorithm for logQ can be used as a black box to obtain an r-approximation for Q. Similar argu-

ments may be used for the other direction.

For the dual problem, the choice of coverage (multiplicative versus additive) changes the ob-

jective function, which affects the approximability. Roughly speaking, a factor r-approximation

algorithm for logD is “equivalent” to a (ρ∗)r-approximation algorithm for D, where ρ∗ is the value

of the optimal ratio for the latter problem. For example, it is easy to see (by taking logarithms as

above) that a factor r approximation for logD implies a (ρ∗)r-approximation for D.

We have the following:

Theorem 3.3.11. Consider the problem D(P, k) for d = 3 objectives.

1. It is NP-hard to approximate the minimum ratio ρ∗ within any polynomial multiplicative factor.

2. It is NP-hard to compute k points that approximate the Pareto curve with ratio better than

(ρ∗)3/2.

Proof. To prove both parts we take advantage of the properties in the NP-hardness reduction of

[KP]. It is shown there that problem logQ is NP-hard for d = 3 via a reduction from 3-SAT. Given

an instance of 3-SAT, the reduction produces an instance (P, c) of logQ such that the smallest

additive c-Pareto set of P reveals whether the 3-SAT formula is satisfiable. We will not repeat

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 52

the reduction here, but we will just give the properties of the construction below needed for our

purposes. We prove each part separately.

1. The crucial property we need here is that the reduction in [KP] is strongly polynomial: Given

an instance (formula) ϕ of 3-SAT with n clauses, the reduction constructs an instance of logQ (or

logD), consisting of a set P of points in 3 dimensions and an additive error bound c such that, if

the formula ϕ is satisfiable then P has a (additive) c-cover with g points (for some parameter g

of the construction), whereas if ϕ is not satisfiable then every c-cover must contain at least g + 1

points. The construction has the property that all the points of P have rational coordinates with

O(log n) bits and the error bound c ∼ 1/n2 (to be precise, c = 1/4n2). This property implies that

in the (additive) dual problem logD with a bound k = g for the number of points in the cover, the

additive “gap” in the value of the optimal covering distance between the Yes case (satisfiable 3-SAT

instance ϕ) and the No case (non-satisfiable 3-SAT instance) is at least inverse polynomial in n, i.e.

at least δ = 1/nr, for a (small) constant r: If the 3-SAT instance ϕ is satisfiable, the optimal value

of the covering distance for the logD instance P with k = g is c; if ϕ is not satisfiable, the optimal

distance is at least c′ = c + δ. By multiplying all the coordinates of the constructed instance by a

factor of 2nr+l, where l > 0 is a constant, and rounding to the nearest integer, we get a new instance

of logD where all the points have integer coordinates and the value of the additive gap between the

satisfiable and the unsatisfiable case is at least nl. We then exponentiate each coordinate (x→ 2x).

The number of bits remains polynomial in the size of the original 3-SAT instance (thus the overall

reduction takes polynomial time) and the value of the multiplicative gap is now 2n
l
.

2. To prove this part, it suffices to show that problem logD does not have an approximation ratio

better than 3/2. The reduction in [KP] uses a number g of gadgets. The construction has gadgets for

the variables and for the clauses, which are connected by paths of flip-flop gadgets that cross using

crossover gadgets. If the formula is satisfiable, then we can cover the points with additive distance

c with g points, one from each gadget. Otherwise, this is not possible. We thus select k = g

and ask for the “best k points” and the corresponding optimal covering distance c∗. As previously

mentioned, if the formula is satisfiable, we have c∗ = c. Now, if the formula is not satisfiable, we

argue below that the optimal covering distance is c∗ ≥ 3c/2. The proof follows directly from this.

Suppose that the 3-SAT formula is not satisfiable and we want to select the best g points. First,

we note that we still need one point from each gadget because otherwise all the points of a gadget

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 53

must be covered by points in other gadgets that are “far away” (much further than c), since the

gadgets are well-separated; that is, if some gadget contains no point of the solution then the covering

distance is much larger than c. Since the formula is not satisfiable, after selecting g points, at

least one gadget will remain “badly covered”, i.e. the point we selected must cover more points

of its gadget than its c-neighborhood. An examination of the three types of gadgets used in the

construction shows that this gives covering distance 2c for both the flip-flop and clause gadgets and

at least 3c/2 for the crossover gadgets. Hence, if the formula is not satisfiable, the optimal covering

distance is c∗ ≥ 3c/2. �

3.3.2.2 Upper Bound

Consider the following generalization Q′(A,P, 1 + ε) of problem Q: Given a set of n points P ⊆

Rd+, a subset A ⊆ P and ε > 0, compute the smallest subset P ∗ε (A) ⊆ P that (1 + ε)-covers A. It

is easy to see that for d = 3 the arguments of [KP, PR] for Q can be applied to Q′ as well showing

that it admits a constant factor approximation (see Remark 3.3.9). We believe that in fact for all

fixed d there may well be a constant factor approximation. Proving (or disproving) this for d > 3

seems quite challenging. The following weaker statement seems more manageable:

Conjecture 3.3.12. For any fixed d, there exists a polynomial time ((1 + ε)α(d), β(d))-bicriterion

approximation algorithm for Q′(A,P, 1 + ε), i.e. an algorithm that outputs an (1 + ε)α(d)-cover

C ⊆ P of A, satisfying |C| ≤ β(d) · |P ∗ε (A)|, for some functions α, β : N→ N.

For d = 3, Conjecture 3.3.12 holds with α(3) ≤ 2, and β(3) ≤ 4. This can be shown by a

technical adaptation of the 3-objectives algorithm in [VY].

For general implicitly represented multiobjective problems with a polynomial GAPδ routine,

we formulate the following conjecture:

Conjecture 3.3.13. For any fixed d, there exists a polynomial time generic algorithm, that outputs

an (1 + ε)α(d)-cover C, whose cardinality is |C| ≤ β(d) ·OPTε, for some functions α, β : N→ N.

The case of d = 3 is proved in [VY] with α(3) = any constant greater than 2 and β(3) = 4.

Note that, by (a variant of) Lemma 3.3.3, Conjecture 3.3.12 implies Conjecture 3.3.13. The converse

is also partially true: Conjecture 3.3.13 implies Conjecture 3.3.12, if in the statement of the latter,

problem Q′ is substituted with problem Q.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 54

In the following theorem, we show that a constant factor bicriterion approximation for Q′ im-

plies a constant power approximation for the dual problem, given the GAP routine.

Theorem 3.3.14. Consider a (implicitly represented) d-objective problem in MPTAS and suppose

that the minimum achievable ratio with k points is ρ∗.

1. For d = 3 objectives we can compute k points which approximate the Pareto set with ratio

O((ρ∗)9), using O((m/δ)d) GAPδ calls, where 1/δ = O(1/(ε′ − ε)).

2. If Conjecture 3.3.12 holds, then for any fixed d we can compute k points which approximate the

Pareto set with ratio O((ρ∗)c), using O((m/δ)d) GAPδ calls, where 1/δ = O(1/(ε′ − ε)) and

c = c(d).

Proof. Part 1 follows from 2 since Conjecture 3.3.12 holds for d = 3. (It will follow from the proof

that c(3) ≤ 9.) To show Part 2, we exploit the relation of problem D(P, k) with the asymmetric k-

center problem. As observed in [VY], the problem logD is an instance of the asymmetric k-center

problem, which we now define for the sake of completeness. In the asymmetric k-center problem

we are given a set of n vertices V with distances, dist(u, v) that must satisfy the triangle inequality,

but may be asymmetric, i.e. dist(u, v) 6= dist(v, u). We are asked to find a subset U ⊆ V , |U | = k,

that minimizes dist∗ = max
v∈V

min
u∈U

dist(u, v). (Note that logD(P, k) is an instance of this problem,

where there exists a bijection between vertices of V and points of P and the distance between points

(vertices) p, q ∈ P is defined as d(p, q) = AD(p, q).)

We claim that, if problem Q′(A,P, 1 + ε) admits a ((1 + ε)α(d), β(d))-bicriterion approxima-

tion, then problem D(P, k) admits a (ρ∗)c(d) approximation for some function c (that depends on

α and β). This is implied by the aforementioned reduction and the following more general fact:

If we have an instance of the asymmetric k-center problem (problem logD(P, k) in our setting)

such that a certain collection of associated set cover subproblems (which are instances of problem

logQ′(A,P, 1+ε) here) admits a constant factor bicriterion approximation (an algorithm that blows

up both criteria by a constant factor), then this instance admits a constant factor unicriterion approx-

imation (an algorithm that outputs a set of no more than k centers). This implication is not stated

in [PV, Ar1], but is implicit in their work. One way to prove it is to apply Lemma 5 of [PV] in

a recursive manner. We will describe an alternative method [Ar2] that yields better constants. We

prove this implication, appropriately translated to our setting, in Lemma 3.3.16.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 55

For a general multiobjective problem where the solution points are not given explicitly, we

impose a geometric
√

1 + δ grid for a suitable δ, call GAPδ at the grid points, and then apply the

above algorithm to the set of points returned. Then the set of k points computed by the algorithm

provides a (1 + ε′)c(d)-cover of the Pareto curve, where 1 + ε′ = (1 + ε)(1 + δ)2. �

Remark 3.3.15. Even though the O(log∗ k)-approximation ratio is best possible for the (general)

asymmetric k-center problem [CG+], the corresponding hardness result does not apply for logD as

long as the dimension d is fixed.

Let H(α) denote the harmonic number extended to fractional arguments by linear interpolation

(i.e. H(α) =
∑bαc

i=1 1/i + (α − bαc)/dαe). For a function g, let g(i) denote the function iterated i

times. Finally, for b > 1 define H∗b (α) = min{i : H(i)(α) ≤ b}. The following lemma completes

the proof of Theorem 3.3.14.

Lemma 3.3.16. Suppose that there exists an ((1+ε)α, β)-bicriterion approximation forQ′(A,P, 1+

ε). Then, problemD(P, k) admits a (ρ∗)c approximation, where c = H∗4/3(β)+α+4. In particular,

for α = 2 and β = 4, we can get c = 9.

Proof. The desired result can be shown by a careful application of the techniques introduced in [PV,

Ar1]. We describe an algorithm – that we denote D(P, k), as the corresponding problem – which,

given a (ρα, β)-bicriterion approximation algorithm, denoted B(A,P, ρ), for problem Q′(A,P, ρ)

as a black box, computes a set Q ⊆ P of (at most) k points that (ρ∗)c-cover the set P , where ρ∗ is

the minimum ratio achievable with k points. We will denote by B(A,P, ρ) the set of points output

by the algorithm B on input (A,P, ρ).

We first note the simple (and well-known) fact that it is no loss of generality to assume that

the algorithm D(P, k) “knows” the optimal ratio ρ∗; this is because ρ∗ will be one of the O(|P |2)

pairwise ratio distances, hence we can try the algorithm for all of them and pick the best solution

(or do an appropriate binary search, see e.g. [Ar1]).

To describe the algorithm, we appropriately translate the notions from [PV, Ar1] to the current

setting. In tandem, we also provide a proof of correctness. We begin with a basic definition.

Definition 3.3.17. For a point q ∈ P and a parameter ρ > 1, we denote Γ+(q, ρ) = {p ∈ P | q ≤

ρ · p} the set of points in P ρ-covered by q and Γ−(q, ρ) = {p ∈ P | p ≤ ρ · q} the set of points

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 56

in P that ρ-cover q. We naturally extend this notation to sets S ⊆ P : Γ±(S, ρ) = {p ∈ P | p ∈

Γ±(s, ρ) for some s ∈ S}. We say that the point q ∈ P is a ρ-center capturing vertex (denoted

ρ-CCV) if it satisfies Γ−(q, ρ) ⊆ Γ+(q, ρ).

Consider an instance of the problem D(P, k) as defined above. Suppose that ρ ≥ ρ∗. In this

case, if the point q is a ρ-CCV, it ρ-covers at least one point of the optimal solution – in particular,

the point q∗ that ρ∗-covers q. Indeed, q∗ ∈ Γ−(q, ρ∗) ⊆ Γ−(q, ρ) ⊆ Γ+(q, ρ). Hence, q ρ2-covers

every point in P ρ-covered by the point q∗. This simple property is crucial for the algorithm.

The algorithm in [PV] has two phases. In the first phase, roughly, it preprocesses the input set

by iteratively finding CCV’s and in the second phase it uses a recursive set cover procedure to cover

the points not covered in the first stage. (The algorithm in [Ar1] replaces the second phase by an

LP-based method.)

The algorithm D(P, k) works in three phases. The first phase is identical to the first phase in

[PV, Ar1]: We preprocess the input set P by iteratively finding ρ∗-CCVs. In the second phase, D

calls the bicriterion approximation algorithm B (with appropriately selected values of its parame-

ters) to cover the subset of P that is not covered in the first phase. The remaining phase involves a

careful application of the recursive greedy set cover procedure of [PV] followed by an application

of the greedy set cover algorithm. To show correctness of the last step, we use the structural lemma

of [Ar1] (itself a variant of a similar lemma in [PV], albeit with improved constants). The algorithm

is presented in detail below.

We now proceed with an intuitive explanation of the different steps in tandem with a proof of

correctness. We explain first what happens during the first phase. We have as input the set P , the

parameter k and the optimal ratio ρ∗. (Recall that the algorithm can “guess” the optimal ratio.) We

iteratively select ρ∗-CCV’s as follows: For each ρ∗-CCV we find, we remove from the “active” set

A (initialized to P) all the points (ρ∗)2-covered by it, until no more CCV’s exist in A. Let C be the

set of CCV’s thus discovered (|C| ≤ k) and A = P \ Γ+(C, (ρ∗)2) be the set of points in P not

(ρ∗)2-covered by any point in C. At this point, we note the following simple fact:

Fact 3.3.18. The set A := P \ Γ+(C, (ρ∗)2) can be ρ∗-covered by k′ = k − |C| points in P \

Γ+(C, ρ∗).

If |C| = k (k′ = 0, A = ∅), we have selected a set of k points that (ρ∗)2-cover the set P and

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 57

Algorithm D(P, k)

(The optimal radius ρ∗ is known

to the algorithm.)

(Phase 1)

A = P ; k′ = k; C = ∅;

While ∃ ρ∗-CCV q ∈ A and k′ > 0 do

{ C = C ∪ {q};

A = A \ Γ+(q, (ρ∗)2);

k′ = k′ − 1; }

(Phase 2)

S0 = B(A,P \ Γ+(C, ρ∗), ρ∗);

(Phase 3)

Ŝ0 = S0 \ Γ+(C, (ρ∗)2);

S1 = Rec-Cover (Ŝ0, A, P, ρ
∗, k′);

Ŝ1 = S1 \ Γ+(C, (ρ∗)4);

S2 = Greedy-Set-Cover (Ŝ1, P, (ρ
∗)3);

Return Q := C ∪ S2.

Routine Rec-Cover (Input: S,A, P, ρ, l)

(There exist l vertices in P that

ρ-cover S, where S ⊆ A ⊆ P .)

S0 = S; i = 0;

While |Si| > 4l/3 do

{

Run Greedy Set Cover to ρ-cover Si

using points of P and let

S̃i+1 ⊆ P be the produced set.

Si+1 = S̃i+1 ∩A;

i = i+ 1;

}

Return Si.

Table 3.3: Algorithm for the Dual Problem.

we can just terminate the algorithm. Otherwise, we proceed with the next phase. In the second

phase, we call the algorithm B to ρ∗-cover the set A. By Fact 3.3.18, there exists a ρ∗-cover of A

with k′ points. Moreover, it is clear that such a cover lies in P \ Γ+(C, ρ∗). Hence, we get a set

S0 ⊆ P \ Γ+(C, ρ∗) of cardinality |S0| ≤ β · k′ that (ρ∗)α-covers A. To motivate the next step, we

note the following immediate implication of Fact 3.3.18:

Fact 3.3.19. Let S ⊆ A. Then S can be ρ∗-covered by k′ points in P \ Γ+(C, ρ∗).

We also recall the following well-known fact [Chv, Joh, Lov] about the performance guarantee

of the greedy set cover algorithm:

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 58

Fact 3.3.20. For a set system (U,R) suppose that there exists a set cover of cardinality p. Then the

greedy algorithm outputs a cover of size at most p ·H(|U |/p).

At this point, we apply the recursive greedy set cover procedure from [PV] to cover Ŝ0 = S0∩A

using points from A. (The points in S0 \ Ŝ0 are (ρ∗)2-covered by C.) Note that in each round of

the recursive cover, we attempt to cover only those points from the last round that do not lie in

Γ+(C, (ρ∗)2), since C will cover those ones. We thus get a set S1 ⊆ P of cardinality |S1| ≤

4k′/3 with the property that S1 covers S0 \ Γ+(C, (ρ∗)
1+H∗

4/3
(β)

) with ratio (ρ∗)
H∗

4/3
(β). The latter

statement can be shown by induction, using Fact 3.3.19 as an invariant. Since this essentially appears

in [PV, Ar1] (see e.g. Lemma 13 in [Ar1]), we do not repeat it here. To motivate the next step, we

need the following combinatorial lemma from [Ar1]:

Lemma 3.3.21 (Theorem 17 in [Ar1], rephrased). Let C ⊆ P and A = P \Γ+(C, (ρ∗)2). Suppose

A has no ρ∗-CCV’s and that there exist k′ centers (points in P) that ρ∗-cover A. Then there exists

a set of 2k′/3 centers in P \ Γ+(C, ρ∗) that (ρ∗)3-covers A′ = P \ Γ+(C, (ρ∗)4).

As a final step of the algorithm, we apply the greedy set cover algorithm – that may be viewed as

one iteration of the recursive procedure – with parameter (ρ∗)3 to cover Ŝ1 = S1 \Γ+(C, (ρ∗)4) us-

ing points from P (so that the optimum has cardinality at most 2k′/3, according to Lemma 3.3.21).

(Note that the points in S1 \ Ŝ1 are (ρ∗)4-covered by C.) We thus get a set S2 ⊆ P of cardinality

at most (2k′/3) ·H ((4k′/3)/(2k′/3)) = (2k′/3) ·H(2) = k′ with the property that S2 covers Ŝ1

within (ρ∗)3. We output the set Q := C ∪ S2; this set has cardinality at most k and it remains to

argue that it covers P with ratio (ρ∗)
4+α+H∗

4/3
(β).

Indeed, every point p ∈ P falls in one of the following categories:

• The point p is (ρ∗)2-covered by a point in C, i.e. p ∈ Γ+(C, (ρ∗)2). (Note that if this is not

the case, i.e. if p ∈ A, then it is (ρ∗)α-covered by S0.)

• The point p is (ρ∗)α-covered by a point p0 ∈ S0 that is not (ρ∗)
H∗

4/3
(β) - covered by S1. In

this case, p0 ∈ Γ+(C, (ρ∗)
1+H∗

4/3
(β)

), so C covers p within ratio (ρ∗)
1+H∗

4/3
(β)+α.

• The point p is (ρ∗)α-covered by a point p0 ∈ S0 that is (ρ∗)
H∗

4/3
(β) - covered by a point

p1 ∈ S1 that is not (ρ∗)3-covered by S2. In this case, p1 ∈ Γ+(C, (ρ∗)4), so C covers p

within ratio (ρ∗)
4+H∗

4/3
(β)+α.

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 59

• The point p is (ρ∗)α-covered by a point p0 ∈ S0 that is (ρ∗)
H∗

4/3
(β) - covered by a point

p1 ∈ S1 that is in turn (ρ∗)3-covered by p2 ∈ S2. In this case, the point p2 covers p within

ratio (ρ∗)
3+H∗

4/3
(β)+α.

Hence the overall covering ratio is (ρ∗)
4+H∗

4/3
(β)+α, which completes the proof. �

Remark 3.3.22. We note here that the recursive set cover procedure (used in the above lemma) was

useful merely to improve the constants in the reduction. One can alternatively prove a (quantitatively

inferior) version of the lemma by the following two-phase algorithm: In the first phase, preprocess

the input set P by iteratively finding ρ-CCVs for appropriately chosen values of the parameter ρ.

In the second phase, call the algorithm B to “cover” the subset of P that is not covered in the first

phase. The analysis of this alternative algorithm is based on repeated applications of Lemma 3.3.21.

Remark 3.3.23. We should remark that the algorithms of this section are less satisfactory than the

bi-objective algorithm of the previous section (and the 2-d and 3-d algorithms of [VY]) in several

respects. One weakness is that the constants c obtained (for d = 3) are quite large: in the case

of Theorem 3.3.1, the best constant c we can get follows from the net construction of [PR] (and is

about 25). In the case of Theorem 3.3.14 there is still a large gap between the upper bound (of 9)

and the lower bound (of 3/2) in the exponent.

A second weakness of the algorithms is that they start by applying the general method of [PY1]

calling the GAP routine on a grid, and thus incur always the worst-case time complexity even if

there is a very small ε-Pareto set. Thus, we view our algorithms in this section mainly as theoretical

proofs of principle, i.e. that certain (constant) approximations can be computed in polynomial time,

but it would be very desirable and important to improve both the constants and the time.

3.4 Conclusion

We investigated in this chapter the problem of computing a minimum set of solutions for a multiob-

jective optimization problem that represents approximately the whole Pareto curve within a desired

accuracy ε. We developed tight approximation algorithms for the bi-objective shortest path prob-

lem, spanning tree, and a host of other bi-objective problems. Our algorithms compute efficiently

CHAPTER 3. SUCCINCT APPROXIMATE PARETO SETS 60

an approximate Pareto set that contains at most twice as many solutions as the minimum one; fur-

thermore improving on the factor 2 for these specific problems is NP-Hard. The algorithm works in

general for all bi-objective problems for which we have a routine for the Restricted problem of ap-

proximating one objective subject to a (hard) bound on the other. The algorithm calls this Restricted

routine and a dual one as black boxes and makes quite effective use of them: for every instance, the

number of calls is linear (at most 4 times) in the number of points in the optimal solution for that

instance.

We presented also results for three and more objectives, both for the problem of computing an

optimal ε-Pareto set and for the dual problem of selecting a specified number k of points that pro-

vide the best approximation of the full Pareto curve. As we indicated at the end of the last section,

there is still a lot of room for improvement both in the time complexity and the constants of the ap-

proximations achieved. We would like especially to resolve Conjecture 3.3.13, hopefully positively.

It would be great to have a general efficient method for any (small) fixed number d of objectives that

computes for every instance a succinct approximate Pareto set with small constant loss in accuracy

and in the number of points, and do it in time proportional to the number of computed points, i.e.,

the optimal approximate Pareto set for the instance in hand.

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 61

Chapter 4

Approximate Convex Pareto Sets

In this Chapter we provide a simple necessary and sufficient condition for the polynomial-time

constructibility of an ε-convex Pareto set (anyone, not necessarily a small one), in terms of the

approximate optimization of monotone linear combining functions of the objectives.

4.1 Efficient Computability: The Comb Problem

In [PY1] it was shown that every multiobjective optimization problem, possesses an ε-Pareto set

(thus, also an ε-convex Pareto set) of size polynomial in the size of the instance and 1/ε. Recall

that there is a simple necessary and sufficient condition [PY1], for the efficient computability of

an ε-Pareto set for a multiobjective problem Π, with a fixed number of objectives d. As shown in

[PY1], there exists PTAS (resp. FPTAS) for the computation of an ε-Pareto set if and only if there is

a subroutine GAPδ(b) that solves the GAP problem for Π in time polynomial in |I| and |b| (resp. in

|I|, |b|, |δ| and 1/δ). Thus, a (fully) polynomial time algorithm for the GAP problem is a sufficient

condition for the (fully) polynomial constructibility of an ε-convex Pareto set. However, as shown

in this chapter, it is not a necessary condition.

We give a useful and natural condition which characterizes the approximability of ε-convex

Pareto sets. Our main result (Theorem 4.1.1) is very intuitive in the following sense: An ap-

proximate convex Pareto set contains an approximate optimum for any monotone linear combin-

ing function of the objectives. Rather surprisingly, we show that the converse is also true: If we

can efficiently approximate any monotone linear combining function of the objectives, then we can

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 62

1+δ

()1 2
,w w=w

()Combq = w
δ

Figure 4.1: Illustration of Combδ(w) routine for two minimization objectives. The shaded region

represents the (set of solution points in the) objective space. There exist no solution points below

the dotted line.

efficiently compute an approximate convex Pareto set.

Let Π be an optimization problem with d minimization objectives f1, f2, . . . , fd. We define the

following associated single objective optimization problem:

Problem CombΠ(I,w).

Input: d-objective problem Π with objective functions f = [f1, . . . , fd] (to be minimized), instance

I ∈ IΠ and vector w ∈ Rd+.

Goal: Compute a solution s∗ ∈ S(I) minimizing the combined objective v = w · f =
∑

iwifi;

If the fj’s are all maximization objectives, then the problem CombΠ(I,w) is defined in a

similar way, the only difference being that the combined objective v is to be maximized. The case

of mixed objectives raises some difficulties and is discussed after the proof of Theorem 4.1.1.

We say that the problem CombΠ(I,w) has a PTAS (resp. FPTAS) if there exists an algorithm

that, for every I ∈ IΠ and for all δ > 0, computes a (1 + δ)-approximate optimum and runs in

time polynomial in |I| and |w| (resp. |I|, |w|, |δ| and 1/δ). For simplicity, we will usually drop the

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 63

problem Π and the instance I from the notation and use Comb(w) (resp. Combδ(w)) to denote the

corresponding problem. We say that the problem of constructing an ε-convex Pareto set has a PTAS

(resp. FPTAS) if there is an algorithm that for every instance I and ε > 0 constructs an ε-convex

Pareto set CPε(I) and runs in time polynomial in |I| (resp. polynomial in |I|, |ε| and 1/ε).

We are now ready to state our main theorem for this chapter:

Theorem 4.1.1. Let the number of objectives d be fixed and of the same type. There is a (F)PTAS

for constructing an ε-convex Pareto set iff the problem Comb admits a (F)PTAS.

We postpone the proof of the theorem for the following section.

For the two dimensional case we will use the following equivalent notation for the Comb rou-

tine: For λ ∈ R+, we will denote by Combδ(λ) a routine that returns a point q ∈ X(I) with the

following property: Consider the line `(q, λ) through q with slope −λ, i.e. `(q, λ) = {(x, y) ∈

R2 | y + λx = y(q) + λx(q)}. Then there exists no solution point (in I) below the line

(1 + δ)−1 · `(q, λ)
def
= {(x, y) ∈ R2 | y + λ · x = (y(q) + λx(q))/(1 + δ)}. Geometrically

we “sweep” the space with a line of absolute slope λ until the line “hits” X(I). See Figure 4.2. We

use the convention that, for λ = +∞, we minimize the x objective. Let δ be the accuracy of the

Comb oracle. We assume that either δ = 0 (i.e. we have an exact routine), or we have a PTAS, i.e.

can efficiently compute Combδ for all δ > 0. For δ = 0, i.e. when the optimization is exact, we

omit the subscript and denote the Comb routine by Comb(λ).

4.2 Proof of Theorem 4.1.1

We prove the theorem for the case of minimization objectives. The proof is similar for the case of

maximization objectives.

(⇒) The reverse direction of the equivalence is quite simple. Suppose that there exists a

(F)PTAS for constructing an ε-convex Pareto set. For an instance I , we are given a weight vec-

tor w ∈ Rd+ and we want to compute a (1 + ε)-approximate solution to Comb(w). To do so, we

construct an ε-convex Pareto set CPε(I) and output the best solution point of CPε(I) under the

combined objective function v = w · f .

Since |CPε(I)| = O((4m/ε)d−1), it is clear that this procedure takes (fully) polynomial time.

We need to argue that the solution point output by this algorithm is an (1 + ε)-approximate op-

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 64

1+δ
λ

()Combq = δ λ

I

Figure 4.2: Illustration of Combδ(λ) routine. The shaded region represents the (set of solution

points in the) objective space I. There exist no solution points below the dotted line.

timum for v. Indeed, let q∗ be an optimal solution point for the combined objective, i.e. q∗ =

argmin{v(q) | q ∈ X(I)}. By the definition of CPε(I), there exists a convex combination

cc =
∑

i λipi (λi ≥ 0,
∑

i λi = 1) with pi ∈ CPε(I), that (1 + ε)-covers q∗, i.e. cc ≤ (1 + ε)q∗.

By linearity and monotonicity of v, it follows that v(cc) ≤ (1 + ε)v(q∗) and v(cc) ≥ mini v(pi).

Hence, there exists some pi ∈ CPε(I) such that v(pi) ≤ (1 + ε)v(q∗) and in particular the solution

point output by the procedure described above satisfies this property.

(⇐) For the other direction, suppose that we have a (fully) polynomial time routine Combδ(w)

and we want to efficiently construct an ε-convex Pareto set. We will describe an algorithm that

makes a polynomial number of calls to the routine – for a fixed (appropriate) value of the parameter

δ and (different) judiciously chosen values of the weight-tuple w – and uses the returned results (so-

lutions) to compute an ε-convex Pareto set. We note that the algorithm is essentially the same as an

algorithm given in [PY1], albeit in a more restricted context there, where all the objective functions

are linear. We show however that the algorithm works in general, optimizing various parameters

(e.g. number of calls to Comb) and giving a different (more general) proof of correctness, which is

also much simpler.

We will need the following definition:

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 65

Definition 4.2.1. We say that a point s ∈ Rd+ is approximately balanced if all its coordinates are

within a factor of 2 of each other.

The basic idea for the algorithm is the following: There is a way to (1 + ε)-cover all approx-

imately balanced solution points using Od((1/ε)d−1) many calls to the Comb routine (we use the

notation Od() to indicate that the hidden constant of the big-Oh depends on d).

More precisely, let Xbal denote the set of approximately balanced solution points in the ob-

jective space. It is not hard to see that there exists an ε-convex Pareto set for Xbal of cardinal-

ity O((1/ε)d−1). We claim that we can compute such a set using Od((1/ε)
d−1) many calls to

Comb. In particular, there exists a non-adaptively selected set of weight-vectors Wbal ⊆ Rd+ of

cardinality |Wbal| = Od((1/ε)
d−1) with the property that the corresponding set of solution points

Qbal = {Combδ(w)}w∈Wbal
– for an appropriate δ = δ(ε) – is an ε-convex Pareto set for Xbal. We

stress the fact that the setWbal will be selected in a non-adaptive way (a priori), which will make

the overall algorithm non-adaptive.

Formally, to achieve this we proceed as follows: We start by picking two (rational) parameters

0 < δ1, δ2 < ε, with bit length representation |δi| = O(|ε|) (i = 1, 2), satisfying (1 + δ1)(1 + δ2) ≤

(1 + ε). (For simplicity, we could for example select δ1 = δ2 = δ =
√

1 + ε− 1 (≈ ε/2, for small

ε). If
√

1 + ε− 1 is not rational, then we pick δ to be a rational satisfying (1 + δ)2 ≤ (1 + ε) with

bit length representation O(|ε|).) (We also note that, if the Comb routine is exact, we can set δ1 = 0

and δ2 = ε.)

We continue by calling Combδ1(w), for all w ∈ Wbal, and outputting the convex Pareto set

Q′bal of the corresponding set of computed points Qbal. To complete the description of the scheme,

it remains to define the set of weight-vectors Wbal. To wit; let M = d2(d − 1)/δ2e. The set

Wbal will be expressed as the union of d sets, i.e. Wbal =
⋃d
j=1W

j
bal. For j ∈ [d], the set Wj

bal

contains the vectors w whose j-th coordinate is equal to 1 (wj = 1) and whose i-th coordinate wi,

i ∈ [d] \ {j}, is in the set G = {l/M, l ∈ [M]} – an additive “grid” between 0 and 1 with step 1/M .

That is,Wj
bal = Gj−1 × 1× Gn−j .

It is clear that |Wj
bal| = O((4d/ε)d−1), which in turn implies |Wbal| = O(4d−1dd · (1/ε)d−1).

The correctness of this scheme is shown in Lemma 4.2.2. In particular, this lemma shows that the

set Qbal is an ε-convex Pareto set for the set of approximately balanced solution points.

Of course, the aforementioned scheme is not sufficient, since not all solution points are approx-

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 66

imately balanced. However, we can exploit the fact that the convex Pareto set and ε-convex Pareto

sets are invariant under scaling of the different objectives; this is a consequence of the multiplicative

approximation. To efficiently construct an ε-convex Pareto set for the entire space, it would thus suf-

fice to scale the different objectives fj , j ∈ [d], using a polynomial number of different scalings, so

that for every solution point s in the objective space, there exists some scaling for which the scaled

version of s is approximately balanced; at this point, one can apply the above scheme for each such

scaling. Indeed, this can be achieved, as described below.

Recall that, by assumption, there exists a polynomial pΠ(·), such that for each instance I ∈ IΠ,

the values of the different objectives are between 2−m and 2m, where m = pΠ(|I|). We will argue

that there exists a set R ⊆ Rd+ of d(2m)d−1 scalings of the objectives with the desired property.

To see this, divide the objective space into d subsets, according to the maximum valued coordinate

(objective), i.e. X =
⋃d
j=1 Xj , where Xj = {s = (s1, . . . , sd) ∈ X | sj = maxi∈[d] si}. The claim

is that we can make every point in Xj approximately balanced using (2m)d−1 scalings. To do this,

we consider the set R−j of all the scalings obtained by multiplying each of the objectives, except

for the j-th one, by all the powers of 2 between 1 and 22m−1. Clearly, there exist |R−j | = (2m)d−1

such scalings and it is easy to see that for each solution point s ∈ Xj there exists some scaling

r ∈ R−j for which the scaled version of s, i.e. s′ = r · s, is approximately balanced. Naturally, we

setR =
⋃d
j=1R−j .

For r = (r1, . . . , rd) ∈ R, denote r ◦ Wbal = {(r1w1, . . . , rdwd) | (w1, . . . , wd) ∈ Wbal}.

To summarize, the algorithm works as follows: For each scaling r ∈ R, we call Combδ1(w), for

all w ∈ r ◦ Wbal, and output the convex Pareto set of the corresponding set Q of solutions. The

algorithm is given in Table 4.1:

The overall algorithm involves Od((m/ε)d−1) (i.e. polynomially many for fixed d) calls to

Combδ1(w). Hence, it runs in polynomial time. For correctness, one needs to show that the com-

puted set of solution points Q is an ε-convex Pareto set (if this is the case, then so is Q′). That is,

we want to show that for any solution point s ∈ X there exists a convex combination of points in Q

that (1 + ε)-covers s. Note that, if a solution point s is approximately balanced with respect to the

fj’s (i.e. without re-scaling the objectives), then, by Lemma 4.2.2 below, it is (1 + ε)-covered by a

convex combination of points in Qbal. Otherwise, the lemma applies for some scaled version of the

point s and the correctness follows by invariance under scaling. Therefore, the proof is complete by

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 67

Generic Algorithm A(Π, I, ε).

Input: Problem Π, instance I ∈ IΠ and ε > 0.

Output: Set of solution points Q′ (ε-convex Pareto set for S(I)).

Pick δ1, δ2 > 0 satisfying (1 + δ1)(1 + δ2) ≤ (1 + ε) and |δ1|, |δ2| = O(|ε|);

Q = ∅;

M = d2(d− 1)/δ2e ; m = pΠ(|I|);

For each scaling r ∈ R of the objectives

For each weight vector w ∈ r ◦Wbal do

{ q = Combδ1(w);

Q = Q ∪ {q}; }

Return Q′ = convex Pareto set of Q.

Table 4.1: Generic oblivious algorithm for the construction of a polynomial size ε-convex Pareto

set.

the following:

Lemma 4.2.2. For any approximately balanced solution point s ∈ Xbal, there exists a convex

combination of points in Qbal that (1 + ε)-covers s.

Proof. Let s ∈ Xbal be an approximately balanced solution point. We will show that:

There exist {λi}ki=1 – satisfying λi ≥ 0,
∑k

i=1 λi = 1 – and {qi}ki=1 ⊆ Qbal such that
∑k

i=1 λiqi ≤

(1 + ε) · s.

Claim 4.2.3. The previous statement is equivalent to the following: For any weight vector w ∈ Rd+,

there exists a point q ∈ Qbal such that w · q ≤ w · (1 + ε)s.

Proof. (⇒) Suppose that {λi, qi}ki=1 defines a convex combination that (1+ε)-covers s, i.e.
∑k

i=1 λiqi ≤

(1 + ε)s. Let w ∈ Rd+. By taking the inner product with w, the latter coordinate-wise inequality

yields
∑k

i=1 λi(w · qi) ≤ w · (1 + ε)s. Since λi ≥ 0 and
∑k

i=1 λi = 1, it follows that there exists

some i ∈ [k] such that w · qi ≤ w · (1 + ε)s.

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 68

(⇐) Suppose that for any direction w ∈ Rd+, there exists a point q ∈ Qbal such that w · q ≤

w · (1 + ε)s. This means that the point (1 + ε)s is dominated by the lower envelope of Qbal. Hence,

there exists a convex combination of points in Qbal that (1 + ε)-covers s. �

We now prove the equivalent statement of Claim 4.2.3. Let w ∈ Rd+ be an arbitrary weight-

vector. It is no loss of generality (by scaling) to assume maxi∈[d]wi = 1 and suppose that wj = 1,

for some j ∈ [d]. Since s = (s1, . . . , sd) is approximately balanced it follows that

sj ≤ w · s ≤ (2d− 1)sj (4.1)

The left inequality is the contribution of the j-th coordinate to the corresponding inner product

and the right inequality uses the fact that s is approximately balanced.

Let w∗ be the weight-vector obtained from w by rounding up each coordinate wi to the grid G

- i.e the closest integer multiple of 1/M . Therefore, w∗j = 1 and, for i 6= j, wi ≤ w∗i ≤ wi + 1/M .

Note that w∗ ∈ Wj
bal, hence it was considered by the algorithm A. Let q∗ be the solution returned

by the algorithm for w∗, i.e. q∗ = Combδ1(w∗) ∈ Qbal. We will show that q∗ satisfies the statement

in Claim 4.2.3, i.e., that w · q∗ ≤ w · (1 + ε)s. We now turn to proving the latter inequality, which

will complete the proof.

The crux of the argument lies in the following claim. The claim states that w∗ · s – the value

of the inner product of the “rounded” vector w∗ with s – is “close” to w · s – the value of the inner

product of the “original” vector w with s. We remark that the proof is crucially based on the fact

that the point s is approximately balanced.

Claim 4.2.4. w · s ≤ w∗ · s ≤ (1 + δ2)w · s

Proof. The left inequality is clear, since 0 ≤ w ≤ w∗ and s ≥ 0. The right inequality follows from

the following chain of calculations:

(w∗ −w) · s ≤ (1/M)
∑

i∈[d]\{j}

si (because 0 ≤ w∗i − wi ≤ 1/M, i ∈ [d] \ {j} and w∗j = wj = 1)

≤ (1/M)2(d− 1)sj (s is approximately balanced)

≤ δ2sj (from our choice of M)

≤ δ2(w · s) (from (4.1))

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 69

�

Also note that, by definition of the Comb routine, we have:

w∗ · q∗ ≤ (1 + δ1) min
q∈CP (I)

w∗ · q ≤ (1 + δ1)w∗ · s (4.2)

By using the fact that 0 ≤ w ≤ w∗, (4.2) and Claim 4.2.4 above, we get:

w · q∗ ≤ w∗ · q∗ ≤ (1 + δ1)w∗ · s ≤ (1 + δ1)(1 + δ2)w · s ≤ (1 + ε)w · s

which is the desired result. �

This completes the proof of Theorem 4.1.1.

4.3 Discussion

Remark 4.3.1. We comment on the case of mixed objectives: In this case the weights in the Comb

problem must be positive for the one type of objectives and negative for the other. If we have

an exact algorithm for Comb then we can construct again in polynomial time an ε-convex Pareto

set; also, all the results in the following chapters that use an exact Comb routine hold. However,

as far as approximate Comb is concerned, note that the weighted linear combination for mixed

objectives may take negative values, and technically speaking, approximation ratios are defined

only for positive functions. We can circumvent this by using absolute values, and requiring that the

absolute difference between the value of the computed solution and OPT be bounded by δ|OPT |.

Such an approximate Comb routine is also sufficient for the polynomial time construction of an

ε-CP, and for the relevant algorithms of the following chapters.

Remark 4.3.2. We would like to emphasize that Theorem 4.1.1 does not depend on the nature of

the objective space. The objective space can be either a convex set (not necessarily a polytope), a

discrete set or even any continuous non-convex set. The only non-trivial assumption we need is that

the values of the objectives are between 2−m and 2m, where m has bit representation polynomial in

the size of the input. The following special cases are of particular interest:

CHAPTER 4. APPROXIMATE CONVEX PARETO SETS 70

1. The objective functions are linear and the feasible space is convex (not necessarily a convex

polytope). In this case, the convexity is transferred to the objective space. An interesting

subcase is when the decision space is polyhedral (i.e. multiobjective linear programming).

2. The decision space (thus, the objective space also) is discrete (finite). This includes all dis-

crete combinatorial optimization problems of interest.

LetA be a linear multiobjective problem; a problem for which all fj(I, s), j ∈ [d], are linear, that is,

each solution s ∈ S(I) is a nonnegative n-dimensional vector, where n = poly(|I|), and fj(I, s) =

vj · s, where the vj’s are nonnegative n-vectors given in the instance I . The single-objective version

of A involves optimizing one linear function (with nonnegative coefficients) over the same solution

space. For linear multiobjective problems, Theorem 4.1.1 reduces to the following:

Theorem 4.3.3 ([PY1]). If A is a linear d-objective optimization problem, then there is a PTAS

(resp. FPTAS) for constructing a CPε(I) iff the single-objective version of A can be approximated

within 1 + ε, in time polynomial in |I| (resp. in time polynomial in |I|, |ε| and 1/ε).

An important corollary of Theorem 4.1.1 is that the class of problems for which an ε-convex

Pareto set is efficiently constructible is much broader than the corresponding class for the ε-Pareto

set. Consider for example the multi-objective s − t min-cut problem: We are given an undirected

graph G = (V,E) with a d-vector of nonnegative weights on each edge (i.e. a function w :

E → Rd+) and a pair of nodes (s, t). The goal is to find an s − t cut such that the sum of the

weights of the edges crossing the cut (for each of the d objectives) is minimized. This is a linear

multiobjective problem whose single-objective version is tractable (exactly solvable in polynomial

time). Therefore, by Theorem 4.1.1, for any fixed d there is an FPTAS for constructing an ε-convex

Pareto set for the problem. However, as shown in [PY1], even for d = 2, there is no FPTAS for

constructing an ε-Pareto set for this problem (unless P = NP). (We note that the proof in [PY1]

is a reduction from the minimum bisection problem that is approximation preserving for d ≥ 3.

This suggests that, for d ≥ 3, there is no PTAS for constructing an ε-Pareto set for the considered

problem.)

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 71

Chapter 5

Succinct Approximate Convex Pareto

Sets

5.1 Chapter Organization

This chapter concerns the computation/approximation of the smallest ε-convex Pareto set CP ∗ε .

There are two variants of this problem, depending on whether the (objective) space is continuous

(convex) or discrete. We analyze each case separately. It turns out that the corresponding problems

are related, but not identical. The structure of this Chapter is as follows: In Section 5.2 we address

the bi-objective problem when the Pareto set is given explicitly in the input. We show that, in both

the continuous and the discrete case, a minimum ε-convex Pareto set can be computed efficiently.

In Section 5.3 we consider the bi-objective problem when the Pareto set is not given explicitly,

but is only accessible through a routine Comb that optimizes (exactly or approximately) monotone

linear combinations of the objectives; we seek general-purpose algorithms that use Comb as a black

box and achieve guaranteed performance in terms of the approximation error of the convex Pareto

set and its size. Note that the Comb-based model is the one used typically in the multicriteria litera-

ture, it is consistent with the characterization of Chapter 4, and applies to a broad class of continuous

and discrete multiobjective problems: Linear Programming, Markov Decision Processes, Shortest

Paths, Spanning Trees, etc.; all of these have an exact Comb routine.

If the Comb routine is exact, we show that in the continuous case we can compute a minimum ε-

convex Pareto set (with a polynomial number of calls to the Comb routine). In the important special

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 72

case of Bi-objective Linear Programming, our algorithm uses roughly 2 LP calls per generated point

of the minimum ε-convex Pareto set. In the discrete case, we can compute a factor-2 approximation,

and the factor 2 is intrinsic, in the sense that no general-purpose algorithm can improve it; we show

also NP-hardness specifically for the bi-objective shortest path problem. If we have an approximate

Comb routine, we present an approximation algorithm for the construction of the minimum ε-convex

Pareto set that achieves factor 3 in the continuous case and factor 6 in the discrete case; for both

cases we show a lower bound of 2.

In Section 5.4 we discuss the problem for d ≥ 3 objectives. We present upper and lower bounds,

both for explicitly given point sets, and for implicitly specified instances. For explicitly given points

we provide a constant factor approximation for d = 3, and an approximation with logarithmic factor

for fixed d ≥ 4; for arbitrary (unbounded) number d of objectives, the approximation problem is

at least as hard as Set Cover (thus is not approximable better than Ω(log n)). For implicitly given

instances we show that no bounded factor can be achieved for the same ε; but if we relax the allowed

error to any ε′ > ε, we can compute an ε′-convex Pareto set which achieves the same approximation

factors (with respect to the minimum ε-CP) as the explicit point case.

5.2 Two Objectives – Explicitly Given Points

We use the following notation in this section. Consider the plane whose coordinates correspond

to the two objectives. Every solution is mapped to a point on this plane. We use x and y as the

two coordinates of the plane. If p is a point, we use x(p), y(p) to denote its coordinates; that is,

p =
(
x(p), y(p)

)
.

Problem Definition We consider the problem of computing the smallest ε-convex Pareto set of

an explicitly given set of points A ⊆ R2
+. We assume that the objectives are to be minimized.

The results can be easily extended to the case of maximization or mixed objectives. As previously

mentioned, we will consider the following two natural “variants” of this problem:

• ProblemQD(A, ε): The input set of points is the discrete setA and we are only allowed to use

points ofA for the approximation. Denote the optimal solution to this problem byCP ∗D(A, ε).

This variant corresponds to the case of a discrete objective space.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 73

• Problem QC(A, ε): The input set of points is convex, in particular a convex polytope, repre-

sented by its set of vertices A. In this case we are allowed to use all points in CH(A) for

the approximation. Denote the optimal solution to this problem by CP ∗C(A, ε). This variant

corresponds to the case of a continuous (convex) objective space.

In this section we show the following theorem, that applies for both versions of the problem:

Theorem 5.2.1 (informal statement). Given a set of points in the plane and a rational parameter

ε > 0, we can compute its smallest ε-convex Pareto set in polynomial time. The same holds for the

dual problem of computing a set of k points that form an ε-convex Pareto set with minimum ε.

The two variants of the problem are very related and the corresponding algorithms are similar.

Even though a unified exposition is possible (in part), for the sake of clarity, we analyze each case

separately. In subsection 5.2.1 we analyze the case of a convex objective space (problemQC(A, ε)).

The algorithm in this case is very simple and intuitive. In subsection 5.2.2, we point out that a naive

adaptation of the aforementioned algorithm is suboptimal and we give a different algorithm that

works in the discrete setting.

The definitions given in this section are mostly dimension-specific. We remark that these defi-

nitions will be naturally generalized to higher dimensions in later sections.

5.2.1 Convex (Objective) Space – problem QC:

Given a discrete set of points A ⊆ R2
+ and a rational error tolerance ε > 0, we want to compute a

minimum cardinality ε-convex Pareto set of A; the approximate set is allowed to contain any point

of CH(A).

We begin with some notation and basic definitions. If a and b are points in the plane, we denote

by ab the line segment they define. To simplify the exposition in some proofs, we will say that a

lies to the left of (resp. below) b if x(a) ≤ x(b) (resp. y(a) ≤ y(b)). If x(a) < x(b), we will say

that a lies strictly to the left of b. Similarly, if S is a set of points in the plane, the leftmost point

in S is the point of S with minimum x-coordinate, etc. When we write S = {s1, s2, . . . , sn}, by

convention it holds x(si) < x(si+1), i ∈ [n − 1], i.e. the points are ordered in increasing order of

their x-coordinates.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 74

Let C = 〈c1, . . . , cn〉 denote a polygonal chain whose vertices are c1, . . . , cn and whose edges

are c1c2, c2c3, . . . , cn−1cn. We assume that x(ci) < x(ci+1) and y(ci) > y(ci+1). It will be

convenient to view C both as a set of points in the plane and as a function of x, y = C(x).

Let CP (A) = {p1, . . . , pn} be the convex Pareto set of A. (By the above-mentioned conven-

tion, we have x(pi) < x(pi+1), i ∈ [n− 1].) The following notion will be useful:

Definition 5.2.2. The lower envelope of A, denoted by LE(A), is the polygonal chain defined by

the vertices in CP (A), i.e. LE(A) = 〈p1, . . . , pn〉.

For notational simplicity, we will write LE instead of LE(A) when there is no confusion on the

underlying set A. It should be noted that the curve defined by LE has a special structure. Viewed as

a function of x, y = LE(x), it is strictly decreasing and convex.

We also consider the (strictly decreasing convex) curve LE′ε obtained from LE by scaling its

points by a factor of (1 + ε) in each coordinate, i.e. LE′ε
.
= (1 + ε) · LE = {p′ | p′/(1 + ε) ∈ LE}.

The following definition will be very useful in the description of the algorithm:

Definition 5.2.3. We say that a point q lies between the curves LE and LE′ε if q is dominated by

some point of LE and is not strictly dominated by any point of LE′ε.

The above definition is straightforwardly generalized to sets of points. We now define the

distance function used to measure the error in the approximation:

Definition 5.2.4. For two points p, q ∈ R2
+ we define the ratio distance between p and q by

RD(p, q) = max{x(p)/x(q), y(p)/y(q), 1}.

Intuitively, the ratio distance between p and q is the minimum value ρ∗ = 1 + ε∗ of the ratio

ρ such that p ρ-covers q. Note also that the ratio distance does not satisfy the “additive” triangle

inequality. However, its logarithm does (i.e. logRD(·, ·) is a “pseudo-metric”). If S is a set of

points, we define (as is standard) RD(p, S) = minq∈SRD(p, q). Let p, q be points in LE. Denote

by p̂q the subset of LE with endpoints p and q. The ratio distance between pq and p̂q is defined by:

RD(pq, p̂q) = max{RD(s, p̂q) | s ∈ pq}.

We now proceed to describe a restatement of the problem QC(A, ε) that forms the basis for

the algorithm. As a first observation, we remark that there always exists an optimal solution to

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 75

the problem that uses points only from LE. This follows directly from the fact that for any point

q ∈ CH(A) there exists a point in LE that dominates q. Since points in A \ CP (A) do not lie in

the lower envelope, we can (and will) assume that A = CP (A); otherwise, we can simply (and

efficiently) pre-process the set A. We also assume that the points of A are sorted in increasing order

of their x-coordinate.

For simplicity, we omit the subscript C and the input setA from some expressions. For example,

we denote CPε instead of CPC(A, ε) for a solution to QC(A, ε).

Lemma 5.2.5. The problem QC(A, ε) is equivalent to the following: Compute a convex polygonal

chain C with minimum number of vertices in LE having the following properties: (i) its leftmost

(resp. rightmost) vertex (1 + ε)-covers the leftmost (resp. rightmost) point of P (A) (ii) the curve C

lies between LE and LE′ε.

Proof. (⇒) First, we show necessity, i.e. that any feasible solution toQC(A, ε) having no redundant

points (i.e. points dominated by convex combinations of others) defines a polygonal chain satisfying

the properties of the lemma.

To wit, consider an ε-convex Pareto set CPε = {q1, q2, . . . , qr}, with x(qi) < x(qi+1), i ∈

[r− 1], having no redundant points. As observed above, we can assume w.l.o.g. that qi ∈ LE for all

i ∈ [r]. Since LE is strictly decreasing and convex, CPε defines a polygonal chain C = 〈q1, . . . , qr〉

in R2 such that the function y = C(x) is strictly decreasing and convex. By definition, for any

point in P (A) there exists a point in C (i.e., a convex combination of at most two points in CPε)

that (1 + ε)-covers it.

We first argue about the necessity of property (i). The leftmost point of P (A) (call it pl) must

be (1 + ε)-covered by a convex combination of points in CPε. Hence, we must have x(q1) ≤

(1+ ε)x(pl). Otherwise, since q1 is the leftmost point of CPε, it is clear that no convex combination

of points in CPε can (1 + ε)-cover pl (because of the x-coordinate). By a symmetric argument, we

get that y(qr) ≤ (1 + ε)y(pr). Thus, the first property must be satisfied.

Now we argue about the necessity of property (ii). Note that, by construction, every point of

C is dominated by some point in LE. Indeed, this holds because its vertices qi are points of LE

and both C and LE are strictly decreasing and convex. We need to show that no point of C can

be strictly dominated by any point in LE′ε. Suppose, for the sake of contradiction, that this is the

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 76

case, i.e. there exists a point c ∈ C that is strictly dominated by some point in LE′ε. (Such a point

c must be an interior point of some edge e ∈ C.) Then, the following claim provides the desired

contradiction:

Claim 5.2.6. Suppose there exists a point c ∈ C that is strictly dominated by some point in LE′ε.

Then, there exists a point in CP (A) that is not (1 + ε)-covered by any point of C.

Proof. To see why, observe that, if there exists a point c ∈ C strictly dominated by a point in

LE′ε, then the curves C and LE′ε must intersect in two points s1 and s2 (assume w.l.o.g. that

x(s1) < x(s2)) so that C lies “above and to the right” of LE′ε between these points (i.e. for all

x ∈ (x(s1), x(s2)) it holds C(x) > LE′ε(x)). This implies that there exists a point s′ ∈ LE′ε

“between” s1 and s2 (that is, whose x-coordinate satisfies x(s1) < x(s′) < x(s2)) such that

s = s′/(1 + ε) ∈ CP (A) (i.e. s′ is the scaled version of a vertex in CP (A)). The implication

follows easily from the the fact that LE′ε and C are strictly decreasing, piecewise linear and convex.

Now, the line segment Os, where O denotes the origin, intersects LE′ε at the point s′ and C at the

point ps. By construction, it holds s′ = (1 + ε)s and ps = (1 + δ)s′, for some δ > 0. Therefore, s

is not (1 + ε)-covered by the point ps ∈ C.

To complete the proof we must argue that no other point of C can (1 + ε)-cover s. Since C is

strictly decreasing (viewed as a function of x), it is easy to verify that ps is the unique point of C

that minimizes its “error ratio” from s, i.e. that RD(C, s) = RD(ps, s) = (1 + ε)(1 + δ) > 1 + ε

and that the minimizer is actually unique. �

(⇐) For sufficiency, we need to show that a polygonal chain C satisfying the two properties

forms an ε-convex Pareto set. It is indeed easy to show that the set of vertices of C, V (C) =

{c1, c2, . . . , cr} (by assumption ci ∈ LE and this is no loss of generality) is an ε-convex Pareto set.

To wit, property (i) guarantees that all the points of P (A) to the left of c1 and below cr are

(1 + ε)-covered by these points. Now consider a point q ∈ P (A) strictly to the right of c1 and

strictly above cr. The line segment Oq intersects C at a point c′, LE′ε at a point q′ = (1 + ε′)q,

for some ε′ ≤ ε, and by property (ii) c′ dominates q′. Otherwise, q′ would strictly dominate c′;

this holds true because the two points lie in the same line through the origin. Thus, the point c′

(1 + ε)-covers q. To finish the argument, notice that c′ can be expressed as a convex combination

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 77

Algorithm Explicit–Convex–2D.

Input: CP (A) = {p1, p2, . . . , pn} and ε > 0.

Output: Q = {q1, . . . , qr} (optimal ε-convex Pareto set).

Construct the polygonal chain LE′ε;

If
(
x(pn) ≤ (1 + ε)x(p1)

)
then { Q = {pn}; halt; }

Compute the point q1 ∈ LE with x(q1) = (1 + ε)x(p1);

Q = {q1} ; i = 1;

While
(
y(qi) > (1 + ε)y(pn)

)
do

{ Compute the rightmost point qi+1 of LE ε-visible from qi;

Q = Q ∪ {qi+1};

i = i+ 1; }

Table 5.1: Optimal algorithm for explicit two dimensional convex case.

of two points of V (C), namely the endpoints of the edge of C that contains it. This completes the

proof. �

Before we state the algorithm, we give the following definition:

Definition 5.2.7. We say that a point p ε-sees a point q (or q is ε-visible from p) if no point of the

line segment pq is strictly dominated by a point of LE′ε.

(In other words, this means that pq does not intersect the region in R2 that is strictly “above

and to the right” of LE′ε.) Motivated by Lemma 5.2.5, we proceed as follows: Given CP (A) and

ε, we construct the polygonal chain LE′ε defined by CP ′(A) = {p′i
.
= (1 + ε) · pi | i ∈ [n]}. We

then select a set of points Q = {q1, q2, . . . , qr} as follows: If pn has x(pn) ≤ (1 + ε)x(p1), we

select pn and halt. Otherwise, the leftmost point q1 ∈ Q is the point of LE having x-coordinate

x(q1) = (1 + ε)x(p1). The remaining points are computed by the following iterative procedure:

Point qi+1 is the rightmost point of LE that is ε-visible from qi. The algorithm terminates when the

point pn ∈ LE is (1 + ε)-covered by the current point qr ∈ Q, i.e. y(qr) ≤ (1 + ε)y(pn).

We give pseudo-code for the algorithm in Table 5.2.1.

A schematic representation of the i-th iteration of the algorithm is given in Figure 5.1.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 78

x

y

i
q

'p

1iq
+

LE

LE'
ε

2i
q

+

1i
q

−

O

Figure 5.1: Schematic performance of the i-th iteration of algorithm CONVEX-2D.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 79

Observe that the point p ∈ LE is (1 + ε)-covered by the point pc; the intersection point of the

segments qiqi+1 and pp1+ε.

We now proceed to analyze the algorithm. The following lemma establishes its correctness.

Lemma 5.2.8. The set Q output by the described algorithm is an ε-convex Pareto set of minimum

cardinality.

Proof. First, we show that the set of points selected by the algorithm forms an ε-convex Pareto set.

To do that, it suffices to verify that the two properties of lemma 5.2.5 are satisfied. By construction,

the point q1 ∈ Q (resp. qr ∈ Q) (1 + ε)-covers the point p1 ∈ CP (A) (resp. pn ∈ CP (A)). So,

the first property is satisfied. To see that the second property also holds, consider two consecutive

points qi, qi+1 ∈ Q. By the definition of visibility, there does not exist any point of the line segment

qiqi+1 that is strictly dominated by any point of LE′ε.

The optimality of the algorithm can be shown by induction. LetCP ∗ε = {p∗1, p∗2, . . . , p∗k} denote

the smallest ε-convex Pareto set. (The p∗i ’ s are ordered “left to right” by convention.) Then, it is

easy to show the following claim: For all i ∈ [k], x(p∗i) ≤ x(qi). This implies that r = k, which

is the desired result. The base case is straightforward; no point to the right of q1 can (1 + ε)-

cover p1. The induction step follows from the following monotonicity property of visibility (itself a

consequence of convexity):

Fact 5.2.9. For all i ∈ [r − 1], consider the closed interval [x(qi), x(qi+1)]. Any point in LE that

lies strictly to the left of qi does not ε-see qi+1.

It is now easy to see that the induction hypothesis – in particular, x(p∗i) ≤ x(qi), i ∈ [r − 1] –

and the above property imply that x(p∗i+1) ≤ x(qi+1). For the sake of contradiction, assume that

this is not the case, i.e. x(p∗i+1) > x(qi+1). Then, by definition, the line segment p∗i p
∗
i+1 contains

a point strictly dominated by a point of LE′ε, which is a contradiction due to Lemma 5.2.5. This

finishes the induction and the proof. �

We now analyze the time complexity of the algorithm. It is not hard to see that the algorithm

uses a linear number of arithmetic operations (i.e. has time complexity O(n) in the real RAM

model). First, it is clear that LE′ε can be constructed in linear time. Also note that each edge qiqi+1

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 80

selected by the algorithm “supports” LE′ε. Thus, it can be found in time linear in the number of ver-

tices of LE “between” qi and qi+1. Therefore, the overall time complexity (in the real RAM model)

is O(n). This is not enough however: we need to bound also the bit precision of the computed

points because n operations can generate in principle numbers with an exponential number of bits.

We show in Lemma 5.2.10 below that this does not happen here: the computed points have rational

coordinates with polynomially bounded bit complexity. We elaborate on this issue below.

We remark that it is not a priori clear that each arithmetic operation performed by the algorithm

runs in time polynomial in the size of the input. This is due to the fact that we have to deal with

the bit precision needed to represent the vertices in the approximation. By assumption, the points

of the input set A are rational vectors, i.e. each coordinate is a rational number. (As is standard,

rational numbers are represented in the form n1/n2, where n1, n2 are integers – n2 6= 0 – and the bit

complexity of such a number is the sum of the bit representations of its numerator and denominator.)

Now recall that the points qi selected by the aforementioned algorithm are in general not points of

the input set A, but rather convex combinations of such points. Hence, (some of) the qi’s may –

in principle – even be irrational. On the other hand, even if the qi’s are guaranteed to be rational,

their bit complexity may scale at each step of the algorithm, thus leading to a super-polynomial bit

complexity for the selected set of points Q. To ensure a polynomial time algorithm in the bit model,

we must rule out such “scenarios”. It turns out that these possibilities can be indeed ruled out, as

shown in the following lemma. It is in fact easy to argue that the qi’s are guaranteed to have rational

coefficients, but proving a polynomial upper bound on the bit complexity is non-trivial.

Lemma 5.2.10. The solution set Q = {q1, . . . , qk} computed by the above algorithm has total bit

complexity O(k2m), where k = |Q| and m is the maximum number of bits required to describe any

vertex p ∈ CP (A) and the error tolerance ε.

Proof. The idea of the proof is to relate the bit complexities of any two consecutive points selected

by the algorithm. Consider two such points qi, qi+1 ∈ Q. If x is a vector with rational coefficients,

we denote by |x| its bit complexity. We will argue that the bit complexities of two consecutive

points are “linearly related”. More precisely, we show that |qi+1| = |qi| + O(m), where m is the

maximum number of bits required to represent any vertex p ∈ CP (A) and the error tolerance ε.

Since the point q1 is easily seen to have bit complexity O(m), the recurrence relation above implies

that the bit complexity of the set Q is O(k2m).

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 81

As previously mentioned, the edge qiqi+1 “supports” the curve LE′ε. Thus, the point qi+1 is

the intersection of two lines: the line (defined by the segment) qip′, where p′ ∈ CP ′(A) and the

line (defined by the segment) plpl+1, where pl, pl+1 ∈ CP (A) (see Figure 5.1 for an illustration).

It follows easily from this that the qi’s have rational coefficients. Indeed, assuming that the point

qi is rational, the coordinates x(qi+1) and y(qi+1) are the solution of a linear system with rational

coefficients (the one defined by the equations of the intersecting lines), thus rational (which follows

for example from Cramer’s rule). As far as bit complexity is concerned, the following claims hold

true:

Claim 5.2.11. For all i ∈ [k] we have y(qi) = αi ·x(qi)+βi, where αi and βi are rational numbers

with bit complexity O(m).

Proof. Given that each vertex of CP (A) has bit representation O(m), the condition qi+1 ∈ plpl+1

implies that, for all i ∈ [k], y(qi) = αi · x(qi) + βi, where αi and βi are rational numbers with bit

complexity O(m). (Indeed, y = αi · x+ βi is the equation of the line defined by the vertices pl and

pl+1.) �

The above claim implies that |y(qi)| = |x(qi)|+O(m). Combining this fact with the following

claim completes the proof.

Claim 5.2.12. For all i ∈ [k − 1] we have: |x(qi+1)| = |x(qi)|+O(m).

Proof. The condition qi+1 ∈ qip′ implies:

y(qi+1)− y(p′)

x(qi+1)− x(p′)
=
y(qi)− y(p′)

x(qi)− x(p′)
.

Combining with the equation from the previous claim, we get:

αi+1 · x(qi+1) + βi+1 − y(p′)

x(qi+1)− x(p′)
=
αi · x(qi) + βi − y(p′)

x(qi)− x(p′)
.

Given that |x(p′)|, |y(p′)| = O(m) (since p′ is a vertex of LE′ε), it can be shown (by elementary

manipulations) that we can rewrite the above equality in the form:

c1 +
c2

α · x(qi+1) + β
= c′1 +

c′2
α′ · x(qi) + β′

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 82

where all the constants are integers with O(m) bits each. From the latter relation, the claim follows

easily. �

This completes the proof of the lemma. �

In other words, the described algorithm runs in polynomial time in the bit model. We remark that

this property of the algorithm is also crucial for the generic algorithms described in later sections.

5.2.2 Discrete (Objective) Space – problem QD

Given a discrete set of points A ⊆ R2
+ and a rational error tolerance ε > 0, we want to compute a

minimum cardinality ε-convex Pareto set ofA; the approximate set is allowed to contain only points

from A.

We essentially use the same notation here as in the previous subsection. LetP (A) = {p1, . . . , pn}

denote the Pareto set of A and CP (A) its convex Pareto set. For simplicity, we omit the subscript

D and the input set A from some expressions. For example, we denote CPε instead of CPD(A, ε)

for a solution to QD(A, ε).

Clearly, it suffices to consider the points in P (A) for the approximation, in the sense that there

always exists an optimal solution contained in P (A). So, we can assume that A = P (A). We also

observe that points in P (A) \ CP (A) (i.e. points dominated by convex combinations of others)

- even points of P (A) that do not lie on the lower envelope LE - are actually necessary for the

approximation. It is easy to see that if we ignore such points, we lose at most a factor of 2; and as

shown in the next section, this is tight.

We first show that a structural lemma very similar to lemma 5.2.5 holds in this setting also. The

proof is almost identical, but we sketch it here for completeness.

Lemma 5.2.13. The problemQD(A, ε) is equivalent to the following: Compute a convex polygonal

chain C with minimum number of vertices in P (A) having the following properties: (i) its leftmost

(resp. rightmost) vertex (1 + ε)-covers the leftmost (resp. rightmost) point of P (A) (ii) the curve C

lies between LE and LE′ε.

Proof. For necessity, consider an ε-convex Pareto setCPε = {q1, q2, . . . , qr}, with x(qi) < x(qi+1),

i ∈ [r− 1], having no redundant points. As observed above, we can assume w.l.o.g. that qi ∈ P (A)

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 83

for all i ∈ [r]. By the definition of P (A), CPε defines a polygonal chain C = 〈q1, . . . , qr〉 in R2

such that the function y = C(x) is strictly decreasing. The chain is convex, since otherwise there

would exist a redundant point in CPε. By definition, for any point in P (A) there exists a point in C

that (1 + ε)-covers it. Similarly to the convex case, we can argue about the necessity of property (i).

Note that, by construction, it suffices to argue that no point of C can be strictly dominated by any

point in LE′ε. For contradiction, suppose that there exists a point c ∈ C strictly dominated by some

point in LE′ε. Then, we claim that there exists a point in CP (A) not (1 + ε)-covered by any point

of C. Sufficiency is also based on arguments parallel to those in Lemma 5.2.5. �

In view of this similarity between the problem QD and its convex counterpart QC, a naive

approach to compute CP ∗D(A, ε) would be the following: Given P (A) and ε, compute its lower

envelope LE (the convex polygonal curve having CP (A) as its vertex set) and its scaled counterpart

LE′ε. Select as the leftmost point q1 in the approximation the rightmost point of P (A) that (1 + ε)-

covers p1 and at each iteration select as qi+1 the rightmost point of P (A) ε-visible from qi. It is not

hard to construct examples for which this approach is suboptimal. It thus turns out that the greedy

criterion “pick as next the rightmost point visible from the current one” fails for this variant of the

problem.

We describe next a modified criterion that works. It can be assumed that P (A) does not contain

any points that are strictly dominated by LE′ε; such points are redundant and cannot be part of an

optimal solution. Let us now define a total order on the points of P (A).

Definition 5.2.14. For p, q ∈ P (A) we say that p is ε-better than q (we denote this by p �ε q)

if either (i) the rightmost vertex vp ∈ LE′ε ε-visible from p, lies to the right of the corresponding

vertex vq for q, or (ii) vp = vq = v and the line (defined by the segment) pv lies above the line qv

to the right of v.

To simplify the exposition, we extend the definition to sets. Given a set of points S, we say

that the point b ∈ S is an ε-best point in the set if for any other point y ∈ S it holds b �ε y. We

note that there may exist more than one points with this property; in such a case we can arbitrarily

pick one of them. The modified algorithm selects a set of points Q ⊆ P (A) as follows: For the

computation of the leftmost point q1 ∈ Q, consider the set of eligible points E1 = {σ ∈ P (A) |

x(σ) ≤ (1 + ε)x(p1)}. If there exists a point in E1 that (1 + ε)-covers pn, select it and halt.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 84

Otherwise, select an ε-best point in E1. For each i ≥ 2, select qi from the set (of eligible points)

Ei = {σ ∈ P (A) | x(σ) > x(qi−1) and σ is ε − visible from qi−1}. If one of the points in Ei

(1 + ε)-covers pn, select it and halt. Otherwise, select an ε-best point in Ei and iterate.

The intuitive justification of the modified criterion is the following: From the analysis of the

convex case, we know that a point of the lower envelope is a better choice than all the points to its

left (for any ε > 0). However, as opposed to the convex case, not all such points can be selected. In

any case, a point of CP (A) is a better choice than all the points to its left. So, suppose that we have

selected the i-th point qi and consider all the points to its right ε-visible from it (call this set Ei+1);

the next point qi+1 must be one of them. Let v denote the rightmost vertex in Ei+1 ∩ CP (A). By

the analysis of the convex case, we can ignore all the points of Ei+1 that lie to the left of v. But how

can we “compare” v to the remaining points of Ei+1? These are undominated points that lie to its

right, but none of them is in CP (A). As mentioned, it is not always the case that the rightmost point

is the correct choice. It turns out that this can be done by comparing the corresponding visibility

regions.

Lemma 5.2.15. The set Q output by the above algorithm is an ε-convex Pareto set of minimum

cardinality.

Proof. As in the convex case, it is straightforward to verify that the two properties of Lemma 5.2.13

are satisfied, thus the set Q forms an ε-convex Pareto set. Let CP ∗ε = {p∗1, . . . , p∗k} denote the

smallest ε-convex Pareto set. For optimality, we will argue that for all i ∈ [k] it holds p∗i ∈ Ei; by

construction, this implies the desired result. This is clearly true for i = 1; the leftmost point of any

ε-convex Pareto set must (1 + ε)-cover p1, so p∗1 ∈ E1. The proof follows from the next claim:

Claim 5.2.16. For all i ∈ [k − 1], if p∗i ∈ Ei then p∗i+1 ∈ Ei+1.

Proof. The claim holds in vacuum for k = 1. (If k = 1, then a point in E1 (1+ ε)-covers pn; such a

point is selected as q1 and forms the minimum cover.) We need to consider the case k ≥ 2. Suppose

that for some i ∈ [k− 1] it holds p∗i ∈ Ei; either qi ≡ p∗i or qi �ε p∗i . This means that the rightmost

vertex v′ ∈ CP (A) ε-visible from qi lies to the right of the rightmost vertex v ∈ CP (A) ε-visible

from p∗i . Notice that we can assume w.l.o.g. that the point p∗i+1 (is equal to or) lies to the right of

v. This follows from the analysis of the convex case. The following fact is straightforward from the

definition of the relation “�ε” and finishes the proof of the claim:

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 85

Algorithm Explicit–Discrete–2D.

Input: P (A) = {p1, p2, . . . , pn} and ε > 0.

Output: Q = {q1, . . . , qr} (optimal ε-convex Pareto set).

Construct the polygonal chain LE′ε;

E1 = {σ ∈ P (A) | x(σ) ≤ (1 + ε)x(p1)};

If
(
∃q ∈ E1 : y(q) ≤ (1 + ε)y(pn)

)
then { Q = {q}; halt; }

Compute the point q1 = ε− best(E1);

Q = {q1} ; i = 1;

While
(
y(qi) > (1 + ε)y(pn)

)
do

{ Ei+1 = {σ ∈ P (A) | x(σ) > x(qi) and σ is ε− visible from qi};

If
(
∃q ∈ Ei+1 : y(q) ≤ (1 + ε)y(pn)

)
then { Q = Q ∪ {q}; halt; }

Compute the point qi+1 = ε− best(Ei+1);

Q = Q ∪ {qi+1};

i = i+ 1; }

Table 5.2: Optimal algorithm for explicit two-dimensional discrete case.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 86

Fact 5.2.17. Let x, y ∈ Ei with x �ε y. Let v be the rightmost vertex v ∈ CP (A) ε-visible from y.

Then x ε-sees v and any point to the right of v ε-visible from y.

By this fact, p∗i+1 is ε-visible from qi ∈ Ei (since it is visible from p∗i ∈ Ei and qi �ε p∗i). Thus,

p∗i+1 ∈ Ei+1. �

�

The algorithm is easily seen to run in time O(n2), where n = |P (A)|.

5.2.3 Best k solutions

In this subsection, we consider the “dual” versions of the problems QC and QD. Namely, we are

given as input a discrete set of points A ⊆ R2
+ and a positive integer k and we want to compute a

set of (at most) k points that form an ε-convex Pareto set with minimum ε. Similarly, we consider

the following two variants of the dual problem:

• Problem DD(A, k): Given as input a discrete set of points A ⊆ R2
+ and a positive integer k,

compute a set S ⊆ A of cardinality at most k that forms an ε-convex Pareto set with minimum

ε.

• Problem DC(A, k): Given as input a discrete set of points A ⊆ R2
+ and a positive integer k,

compute a set S ⊆ CH(A) of cardinality at most k that forms an ε-convex Pareto set with

minimum ε.

We analyze each problem separately.

ProblemDD(A, k): Denote by P (A) = {p1, . . . , pn} the Pareto set ofA. As in problemQD(A, ε),

it suffices to select points of P (A) for the approximation. Let ε∗ be the optimal value of the error

tolerance ε and ρ∗ = 1 + ε∗ the corresponding value of the ratio.

A first observation is that there exist only polynomially many possible values for ρ∗; in partic-

ular, O(n2) values, where n = |P (A)|. This holds for the following reason: Consider a feasible

solution to the problem, i.e. a set S = {s1, . . . , sk} ⊆ A. The set S forms an εS-convex Pareto curve

of A where ρS ≡ 1 + εS = max{RD(s1, p1),RD(sk, pn),max{RD(sisi+1, q) | i ∈ [n− 1], q ∈

A, x(si) ≤ x(q) ≤ x(si+1)}}. It is easy to see that there are O(n2) such values for all possible

combinations of sets S. Let ε1 < ε2 < . . . < be the candidate values of the error.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 87

We can compute the optimal ε value by a binary search procedure on the εi’s using the algorithm

for the problem QD(A, ε) as the decision procedure. More specifically, for a given εi we call

QD(A, εi). If the optimal solution has more than k points, then we conclude that ε∗ > εi, otherwise,

ε∗ ≤ εi and so on. The algorithm terminates when we find an i∗ such that the solution returned by

QD(A, εi∗) has at most k points while QD(A, εi∗+1) returns a solution with more than k points.

The enumeration of the εi’s takes O(n2) time and the binary search procedure can be done in

O(n2 log n) time. Thus, the overall time complexity is O(n2 log n).

Problem DC(A, k): Denote by CP (A) = {p1, . . . , pn} the convex Pareto set of A. As in problem

QC(A, ε), it suffices to select points of LE(A) for the approximation.

This version of the problem is a bit trickier. Now a feasible solution S = {s1, . . . , sk} can

select points from the continuous set LE(A). Thus, the above approach does not immediately

apply. We can first compute a lower bound εLB for ε∗ by solving DD(CP (A), 2k) and an upper

bound εUB by solving DD(CP (A), k). We can then do a similar binary search procedure between

these values to compute ε∗, using the algorithm for the problemQC(A, ε) as the decision procedure.

The search terminates when we restrict the candidate values of ε in a “small enough” interval such

that we “know that nothing can change” in this interval. This procedure will run in polynomial time

because of Lemma 5.2.10. This essentially means that we do not need to consider a continuum of

points, but only a finite subset with bit complexity polynomial in the size of the input.

5.3 Two Objectives – General Results

In this section we consider implicitly represented instances and give generic algorithms and lower

bounds for the problem of computing a minimum cardinality ε-convex Pareto set. In Section 5.3.1,

we consider the special case that an exact Comb routine is available and Section 5.3.2 considers the

general case of an approximate routine.

5.3.1 Exact Comb routine

In this section we analyze the case that a polynomial exact Comb routine is available. This special

case is particularly interesting, because it includes many problems of interest; for example, bi-

objective linear programming and all linear discrete bi-objective problems whose single objective

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 88

version is tractable (e.g. bi-objective shortest path, spanning tree, matching, s − t min-cut, etc.)

belong to this class.

We first give a lower bound showing that no generic algorithm can guarantee a ratio better than

2. We then give a matching upper bound; we exhibit a generic algorithm that guarantees ratio 2

and applies to all such problems with a discrete objective space. For continuous problems with

a polyhedral objective space we can compute an ε-convex Pareto set of minimum cardinality. In

particular, for the case of bi-objective linear programming we give an optimal algorithm that is in

addition very efficient.

5.3.1.1 Lower Bound for Discrete Case

Computing the smallest ε-convex Pareto set is typically NP-hard for common problems even for

two objectives. The following proposition is an illustration of this fact.

Consider the bi-objective Shortest Path (BSP) problem: we are given an undirected graph G =

(V,E), rational “costs” c(e) and “delays” d(e) for each edge e ∈ E and two specified nodes s and

t. The set of feasible solutions is the set of s− t paths; the goal is to minimize cost and delay.

Proposition 5.3.1. For the BSP problem, for any k from k = 1 to a polynomial, it is NP-hard to

distinguish the case that the minimum size of the optimal ε-convex Pareto set is k from the case that

it is k + 1. In particular, no polynomial time algorithm can approximate the size of the smallest

ε-convex Pareto set to a factor better than 2 (unless P = NP).

Proof. The proof is by an adaptation of Theorem 3.1.2. showing that it is NP-hard to distinguish

the case that the size of the smallest ε-Pareto set for this problem is k from the case it is 2k − 1.

The reduction is from the Partition problem [GJ]; given a set A of n positive integers A =

{a1, a2, . . . , an}, we wish to determine whether it is possible to partition A into two subsets with

equal sum. Given an instance of Partition, we construct an instance of the BSP problem as follows:

Let G be a graph with n + 1 nodes vi and 2n edges {ei, e′i}; the pair of (parallel) edges {ei, e′i}

has endpoints vi and vi+1. Consider k disjoint copies of the graph G, Gj = (V j , Ej), j ∈ [k],

with V j = {vji }
n+1
i=1 and Ej = {eji , e′

j
i}ni=1. Add a (source) node s and a (sink) node t; for

each j add an edge from s to vj1 and one from vjn+1 to t. Assign zero cost and delay to each

edge incident to s or t and set: (1 + 2ε)2(j−1)c(eji) = d(e′ji)/(1 + 2ε)2(j−1) = S + 2εain and

(1 + 2ε)2(j−1)c(e′ji) = d(eji)/(1 + 2ε)2(j−1) = S. Let H denote the resulting edge weighted graph.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 89

It is easy to see that the Pareto set for this instance is the union of k disjoint “clusters”; the points

in each cluster lie on the line segment ljrj , where lj =
(
Sn/(1 + 2ε)2(j−1), Sn(1 + 2ε)2(j−1)+1

)
and rj =

(
Sn/(1 + 2ε)2(j−1)−1, Sn(1 + 2ε)2(j−1)

)
. Notice that no s − t path using graph Gj

is (1 + ε)-covered by any s − t path using graph Gl for j 6= l. Thus, any ε-Pareto set for

this instance must contain at least k points. Also observe that the points lj and rj (1 + ε)-

cover the jth cluster. Thus, 2k points suffice to (1 + ε)-cover the feasible set. Now the jth

cluster is (1 + ε)-covered by one point iff there exists an s − t path with coordinates mj =(
(1 + ε)Sn/(1 + 2ε)2(j−1), (1 + ε)Sn(1 + 2ε)2(j−1)

)
which in turn holds iff the original Partition

instance is a Yes instance. (This also implies that there exists an ε-Pareto set with at most 2k − 1

points iff there exists an ε-Pareto set with exactly k points.) So, if there exists a partition of the set

A, the smallest ε-Pareto set contains exactly k points. Otherwise, the smallest such set must contain

2k points.

Notice that the case of k = 1 of Proposition 5.3.1 directly follows from the aforementioned.

To show that the result holds also for more general k, we need to modify the above construction as

follows. Consider the graph H as defined above. The idea of the proof is the following: Add one

solution point (s−t path) between any two adjacent clusters satisfying the following two properties:

(i) Its ratio distance from the line segment connecting the “midpoints” of the clusters is equal to

(1 + ε). (ii) The Pareto set of the new instance contains all the previous points plus the added

ones. It is not difficult to verify that the above conditions can be simultaneously achieved, if ε is

small enough. For the augmented instance, if all the midpoints correspond to solution points, they

constitute an ε-convex Pareto set. If this is not the case, we can inductively argue that any ε-convex

Pareto set must contain at least k+ 1 points. Therefore, it is NP-hard to decide whether the smallest

ε-convex Pareto set has k or k + 1 points. �

The NP-hardness also holds for bi-objective spanning tree and many other common problems.

We note that the above proof does not rule out the possibility of an asymptotic approximation

scheme for this specific problem. Identifying the exact limit of approximation is an interesting

question.

In general however, no generic algorithm can distinguish whether the optimal set has k points

or 2k − 1 points (for any k), because of the following:

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 90

Theorem 5.3.2. For the bi-objective discrete setting, no generic algorithm having oracle access to

Comb for constructing a small ε-convex Pareto set can be better than 2-competitive.

Proof. The proof is based on the fact that, by using the Comb primitive as a black box, we cannot

access solution points that do not lie in the convex Pareto set.

The idea of the proof is the following: Given an error ε > 0 and a positive integer k, we will

exhibit the existence of a set S = {pi, qi, ri | i ∈ [k]} ⊆ R2
+ (of 3k points) such that the following

three conditions are simultaneously satisfied: (i) CP (S) = {pi, ri | i ∈ [k]} (ii) CP ∗C,R(S, ε) =

CP (S) and (iii) CP ∗D(S, ε) = {qi | i ∈ [k]}. These conditions say that the smallest ε-convex Pareto

set that uses points only from CP (S) (i.e. solution points accessible with our primitive) contains

exactly 2k points (in fact all the points in CP (S)), while the (globally) smallest ε-convex Pareto set

contains exactly k points (none of which is in CP (S)).

We now translate the aforementioned into a set of geometric constraints. First, the points of

CP (S) are ordered as follows: For i ∈ [k − 1], pi lies to the left and above ri which lies to the

left and above pi+1. Recall that the points of CP (S) are the vertices of a strictly decreasing convex

polygonal chain. For i ∈ [k], qi lies in the interior of the line segment piri. The point q1 has

x(q1) = (1+ε)x(p1). Similarly, y(qk) = (1+ε)y(rk). Now the line qiqi+1 is parallel to ripi+1 and

the ratio distance of both ri and pi+1 from the former line is exactly (1 + ε). On the other hand, the

ratio distance of ri from the line pipi+1 is (strictly) more than (1 + ε). Similarly, the ratio distance

of pi+1 from riri+1 is (strictly) more than (1 + ε). It is easy to see that, if the above geometric

constraints are satisfied, the three conditions of the previous paragraph are met. Thus, it suffices to

show that there exists a set of points in the plane satisfying these geometric constraints.

It does not seem easy to give general closed forms for the coordinates of the points in S, even

for k = 2. However, it is sufficient to show that a set of points with the aforementioned properties

exists for any given ε > 0 and k. We next argue about the existence of an instance with the desired

properties for k = 2. The case of general k can be shown by induction.

By a geometric argument, we show that for k = 2, for any given ε > 0, there exists a family of

instances in the plane satisfying the desired constraints. Given ε, we first select the points r1 and p2

such that y(r1) > (1 + ε)y(p2) and x(p2) > (1 + ε)x(r1). Now we consider the line l0 parallel to

r1p2 and scaled by (1 + ε); q1 and q2 are points of l0. It remains to explain how we select the slopes

λ of the line p1q1r1 and λ′ of p2q2r2. We give the argument for λ. The case of λ′ is symmetric.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 91

Intuitively, if |λ| is large enough, then the desired conditions should hold. Indeed, consider the

following constraints: (i) x(p1) = x(q1)/(1 + ε) (ii) q1 is the intersection of l0 and p1q1r1 and

(iii) r1’s ratio distance from p1p2 is larger than (1 + ε). It can be shown algebraically that these

constraints are satisfied for λ < λ0, where λ0 < 0 is the negative root of a second order equation.

Choosing an appropriate value for λ determines the coordinates of q1 and p1.

A useful illustration of the described construction is provided in Figure 5.2. �

It is interesting to identify natural bi-objective problems for which it is NP-hard to distinguish

whether the optimal set has k points or 2k − 1 points (for general k). We conjecture that the bi-

objective s− t min-cut problem has this property (for small enough ε).

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 92

p

q

r

'p

'q

'r

Figure 5.2: Illustration of factor 2 lower bound for exact Comb (k = 2).

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 93

5.3.1.2 Upper Bounds

In this section, we give an efficient algorithm that computes an ε-convex Pareto set of size at most

twice the optimal. The algorithm applies to all discrete bi-objective problems that possess an exact

Comb routine. We moreover show that, if the objective space is polyhedral and the corresponding

vertices have polynomial bit complexity, we can efficiently compute an ε-convex Pareto set of min-

imum cardinality. For the important special case of bi-objective linear programming, we describe

an implementation of our generic scheme that is more efficient in a precise way.

Discrete Problems: The idea of the generic algorithm is to appropriately use the routine so as to

simulate the algorithm for problem QD (i.e. with explicitly given points). As noted in the previous

section, this is not exactly possible, since, using the given routine as a black box, we cannot access

the solution points that do not lie in the convex Pareto set of the objective space. However, as noted

before, if we ignore such points we do not lose more than a factor of 2 in the approximation. With

that in mind, the generic algorithm outputs a set of points Q = {q1, q2, . . . , qr} as follows: We first

compute the leftmost and rightmost points of the convex Pareto set. Let us denote these points by

pl and pr respectively. This can be easily done, since our routine is exact. If these two points do not

constitute an ε-convex Pareto set, we select as q1 the rightmost solution point in the convex Pareto

set that lies at most (1 + ε) to the right of pl. The remaining points are selected by the following

iterative procedure: The point qi+1 is the rightmost point of the convex Pareto set that is ε-visible

from qi. To achieve the simulation of visibility we use a “binary search procedure on the slopes”

with an application of the given routine at each step of the search. In particular, the algorithm uses

an operation Next(qi) that computes the next point to be selected, i.e. the rightmost point of the

convex Pareto set that is ε-visible from qi.; for uniformity, we write q1 = Next() for the first point

selected by the algorithm. We elaborate on this procedure and prove its polynomial running time in

Lemma 5.3.4.

The algorithm is described in pseudo-code in Table 5.3:

Theorem 5.3.3. For any discrete bi-objective optimization problem possessing an exact Comb

routine, for any ε > 0, the algorithm of Table 5.3 computes a 2-approximation to the smallest ε

- convex Pareto set in polynomial time.

Proof. It suffices to argue that the algorithm faithfully simulates the “relaxed” algorithm (i.e. the

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 94

Algorithm Exact Comb–Discrete–2D(Π, I, ε).

Input: (Discrete) Problem Π, instance I ∈ IΠ and ε > 0.

Output: Set of solution points Q = {q1, . . . , qr} (ε-convex Pareto for S(I)).

m = pΠ(|I|); λmax = 22m; λmin = 2−2m;

pl = Comb(λmax); pr = Comb(λmin);

If
(
y(pl) ≤ (1 + ε)y(pr)

)
then { Q = {pl}; halt }.

If
(
x(pr) ≤ (1 + ε)x(pl)

)
then { Q = {pr}; halt }.

λ0 = absolute slope of plpr; r = Comb(λ0);

If
(
RD(plpr, r) ≤ (1 + ε)

)
then { Q = {pl, pr}; halt. }

q1 = Next();

Q = {q1}; i = 1;

While
(
y(qi) > (1 + ε)y(pr)

)
do

{ qi+1 = Next(qi);

Q = Q ∪ {qi+1};

i = i+ 1; }

Table 5.3: Algorithm for two dimensional discrete convex Pareto approximation (exact Comb).

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 95

one that ignores the points that do not lie in CP (I)) and that it runs in polynomial time. Having

shown this, it follows from the analysis of the previous section that it achieves a factor 2 approxi-

mation to the smallest ε-convex Pareto set.

First, it is clear that the solution points pl and pr are the leftmost and rightmost points of the

convex Pareto setCP (I), for the given instance I . We first check whether either or both these points

constitute an ε-convex Pareto set, in which case we output the appropriate set and halt. Otherwise,

we call the procedure Next() to find the rightmost point q1 ∈ CP (I) that (1 + ε)-covers pl. If q1

(1+ ε)-covers pr, we output q1 and halt. Otherwise, for i ≥ 1, we call Next(qi) to find the rightmost

vertex qi+1 ∈ CP (I) that is ε-visible from qi. If qi+1 (1 + ε)-covers pr, we terminate the algorithm.

It is thus easy to see that the algorithm is a 2-approximation.

The following lemma describes the operation Next(), establishes the fact that it can be imple-

mented to run in polynomial time and thus completes the proof. We remark here that the lemma

crucially uses the fact that the underlying problem Π is a discrete combinatorial problem.

Lemma 5.3.4. The operation Next(qi) can be implemented to run in time polynomial in |I| and 1/ε.

Proof. The operation is implemented by using a binary search procedure on the slopes (in the objec-

tive space) with an application of Comb at each step of the search. Since the problem Π is discrete,

it follows that the (absolute value of the) slope of each edge of the lower envelope is a rational

number with at most 2m bits, where m = pΠ(|I|); hence, it is in the interval (2−2m, 22m). Also,

the absolute value of the difference between any two such slopes is lower bounded by 2−2m. These

facts are crucial because they guarantee that the binary search performed on the value of the slope

will terminate after a polynomial number of steps.

Let us first describe how to implement Next() (i.e. the selection of the leftmost point q1 ∈

Q); this operation computes the rightmost vertex q1 of the convex Pareto set CP (I) that satisfies

x(q1) ≤ (1 + ε)x(pl). To find q1 we do a binary search on (the absolute value of the slope)

λ ∈ [2−2m, 22m]. At each step of the search, we call Comb(λ) to compute a solution point pλ that

minimizes the linear objective function (λ, 1). Note that pλ necessarily lies on the lower envelope,

but is not necessarily a vertex in CP (I). The search terminates the first time we find two points

qYES = Comb(λYES) with x(qYES) ≤ (1 + ε)x(pl) and qNO = Comb(λNO) with x(qNO) >

(1+ε)x(pl) such that |λYES−λNO| < 2−2m. This is clearly achieved after a polynomial number of

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 96

calls to the routine. By the discreteness of the space, the solution points qYES, qNO will be adjacent

vertices in CP (I); we therefore set q1 = qYES.

The implementation of Next(qi) is similar. The main difference is in the termination criterion

of the binary search procedure. To wit, suppose we have computed the solution points q1, . . . , qi

and we call Next(qi) to compute the point qi+1. We do a binary search on λ ∈ (λi, 2
2m], where λi

is the terminating value of the absolute slope from the previous iteration. Similarly, at every step of

the search, we call Comb(λ) to compute the solution point pλ that minimizes the linear objective

(λ, 1). Consider the line segment qipλ and the absolute value λ′ of its slope. By definition, the

point r = Comb(λ′) is a solution whose ratio distance from qipλ is maximum among all solution

points with x-objective value between qi and pλ. That is, the solution point pλ is ε-visible from

qi if and only if RD(qipλ, r) ≤ 1 + ε. This criterion guides the binary search which terminates

the first time that we find solution points qYES and qNO such that qYES is ε-visible from qi, qNO

is not and |λYES − λNO| < 2−2m. Similarly, by the discreteness of the space, the aforementioned

is achieved after a polynomial number of calls to the Comb routine. Moreover, the solution points

qYES, qNO can be assumed without loss of generality to be adjacent vertices in CP (I); hence, we

set qi+1 = qYES. �

�

We remark that, even though the above generic scheme runs in polynomial time, it is not very

efficient. An interesting research problem is to obtain more efficient algorithms for important com-

binatorial problems such as shortest paths, spanning trees, etc.

Convex Problems: If the objective space is convex, in particular a convex polytope (polygon) whose

vertices have polynomial bit complexity, then we can compute in polynomial time an ε-convex

Pareto set of minimum cardinality by an adaptation of the aforementioned scheme. We note that

this class of problems includes bi-objective linear programming; however, our generic algorithm

does not assume linearity of the objective functions.

The algorithm is similar in spirit to the previous case: It faithfully simulates the exact algorithm

for problem QC. For the simulation we use a similar binary search procedure as the one described

in Lemma 5.3.4. The main difference is that after we compute the adjacent vertices qYES and qNO

such that qYES is ε-visible from qi and qNO is not, we compute the rightmost convex combination

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 97

q∗ of qYES and qNO that is ε-visible from qi. By convexity of the objective space, we know that q∗

corresponds to a solution point and we set qi+1 = q∗.

Lemma 5.2.10 guarantees that the points q∗ selected in this manner have polynomial bit com-

plexity (in |I| and 1/ε) – assuming that the extreme points in the objective space have polynomial

bit complexity – given that the size of the smallest ε-convex Pareto set is polynomial in |I| and 1/ε.

Hence, q∗ can be computed in polynomial time. We thus have the following:

Theorem 5.3.5. For any bi-objective optimization problem with polyhedral objective space pos-

sessing an exact Comb routine, for any ε > 0, we can compute in polynomial time a set of solution

points that form an ε - convex Pareto set of minimum cardinality.

Remark 5.3.6. As stated in the theorem above, in this setting, we can compute a set of solution

points that form an ε - convex Pareto set of minimum cardinality. However, since the objective

functions are black-boxes, there is no general way to efficiently compute a solution si ∈ S(I) such

that f(si) = qi. In this sense, the lower bound of 2 shown in the previous section also holds for the

class of convex problems considered here. However, if the solution space is a convex polytope and

the objectives are linear, the convex combination of solutions corresponding to the adjacent vertices

qYES and qNO is a feasible solution corresponding to qi. This immediately yields a polynomial

time algorithm to compute an optimal ε-convex Pareto set of minimum cardinality for bi-objective

linear programming (and all problems reducible to it such as flow problems for example). Since

this problem is of particular interest, we give a more efficient construction of an optimal ε-convex

Pareto set in the following subsection.

Bi-objective Linear Programming: An important special case of the continuous space setting is

Bi-objective Linear Programming. Even though there has been extensive work on this problem, we

are not aware of any optimal approximation algorithm. Many existing algorithms use variations of

an intuitive approach which starts with the segment connecting the leftmost and rightmost points

of the Pareto curve (which can be found by LP), and then iteratively refines the current polygonal

line by introducing additional points that optimize judiciously chosen linear combinations of the

objectives, until the desired approximation error ε is achieved. Various versions have been intro-

duced under various names (ES, sandwich method, chord rule). Such a method has been studied

analytically in [RF] in the context of the bi-objective min cost flow problem (a special case of LP).

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 98

They use the same multiplicative metric for the approximation error ε as we do, and show that the

number of points generated is at most pseudopolynomial in the size of the instance and 1/ε; they

do not compare it with the size of the minimum ε-CP. With a slightly more careful analysis one can

show actually that the number of points is polynomial, however it is suboptimal and, as shown in

Chapter 6, it is not within any constant factor of OPT .

Theorem 5.3.5 implies that we can compute the optimal ε-convex Pareto set for bi-objective LP

in polynomial time. We show now that we can in fact do it using essentially 2 LP calls per generated

point.

Theorem 5.3.7. For the case of bi-objective linear programs, we can efficiently compute the optimal

ε-convex Pareto set by solving a linear number of LP’s. In particular, if k is the size of the optimal

ε-convex Pareto set, our algorithm solves 2k + 3 LP’s whose size is of the same order as the size of

the initial LP.

Proof. We give the proof for the case of minimization objectives, the extension to maximization or

mixed objectives being straightforward.

Given a bi-objective linear program with two minimization objectives, we describe an algorithm

to compute a set of solutions that form an optimal ε-convex Pareto set. The described algorithm is

efficient in a precise way: Let k be the cardinality of the optimal ε-convex Pareto set. The algorithm

involves the solution of O(k) (single-objective) linear programs whose size is roughly the same as

the size of the linear program under consideration.

To simplify the exposition, let us assume that we have a compact decision space defined by:

Z = {z ∈ Rn×1 | A · z ≥ b, z ≥ 0n×1}

where A ∈ Qm×n and b ∈ Q1×m. We have two minimization objectives defined by the vectors

c, d ∈ R1×n. Hence, the objective space is given by:

X = {(x, y) ∈ R2
+ | x = c · z, y = d · z, z ∈ Z}

We need to assume that the objective values are constrained to be positive so that approximation

makes sense. Note that the objective space X is a convex polygon.

The overall framework of the algorithm is the one described above for convex problems. We

select a set of solution pointsQ = {q1, . . . , qk} in the objective space “left to right” such that qi+1 is

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 99

the rightmost solution point that is ε-visible from qi. However, the special structure of the considered

problem allows for a much more efficient implementation of the Next operation, as compared to the

generic binary search procedure described above. In particular, we do not use binary search at all,

but we directly simulate the explicit optimal algorithm. We next describe how this can be achieved.

A first ingredient is the computation of the points pl and pr, the leftmost and rightmost points of

the (convex) Pareto set respectively. We describe how to compute pl, the computation of pr being

symmetric. This can be done by solving two linear programs; the first one to compute x(pl) and the

second one to compute y(pl). We first solve the LP: minx s.t. {x = c · z, z ∈ Z}. The solution

of this LP gives the x-value of pl, i.e. xmin = x(pl). Having computed xmin, the second LP is:

min y s.t. {c · z = xmin, z ∈ Z} and gives y(pl). Similarly, the computation of the first point q1 in

the optimal approximate set, i.e. the point of LE having x-coordinate x(q1) = (1 + ε)x(pl) can be

easily done by solving one linear program; namely, y(q1) is the solution of the LP: min y s.t. {y =

d · z, c · z = (1 + ε)xmin, z ∈ Z}.

The main ingredient of the algorithm is the efficient implementation of the Next operation:

Given a point p on P (X), the Pareto curve of X, and ε > 0, compute the rightmost point q ∈ P (X)

that is ε-visible from p. We now show how to implement this operation by solving two linear

programs of size roughly the same as the original one.

Recall that our ultimate goal is to compute the point q, given p and ε. Let r∗x + y = t∗,

r∗, t∗ > 0 be the equation of the line pq. We will first identify this line, i.e. compute the values of

the parameters r∗ and t∗. Since the point p belongs to this line, it follows that r∗x(p) + y(p) = t∗

– note that x(p), y(p) are constants and r∗, t∗ variables in this equation. By construction of the

explicit optimal algorithm, r∗ is the minimum absolute value of the slope such that for all solution

points (x, y) ∈ X it holds r∗x+ y ≥ t∗/(1 + ε). In other words, we want the following implication

to hold:

z ∈ Z ⇒ r∗(c · z) + (d · z) ≥ t∗/(1 + ε).

From duality theory, this implication holds iff there exists a vector w ∈ R1×m
+ (the dual variables

corresponding to the rows of A) such that r∗c+ d ≥ wA and w · b ≥ t∗/(1 + ε).

Therefore, we first solve the LP:

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 100

min r∗ s.t.

r∗x(p) + y(p) = t∗

r∗c+ d ≥ wA

w · b ≥ t∗/(1 + ε)

w ≥ 01×m

r∗ ≥ 0

The solution of this LP gives the equation of the line pq. The point q is the solution point on

this line with minimum y-value. To compute it, we thus solve the following LP:

min y s.t.

r∗x+ y = t∗

x = c · z, y = d · z

z ∈ Z

Note that the x and y are now variables and r∗, t∗ are the parameters of the line computed by

the previous LP. The solution of this LP gives the coordinates of the point q. �

Remark 5.3.8. We briefly mention that, in this case, we can solve the dual problem exactly by using

the same binary search procedure that gives a PTAS in the next section.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 101

5.3.2 Approximate Comb routine

In this section we give algorithms and lower bounds for the problem of computing a small ε-convex

Pareto set that apply to all bi-objective problems (in our general framework) that have a polynomial

approximate Combδ routine. Our results apply a fortiori if a GAPδ routine is available. If this is the

case, we point out that we can usually save a factor of 2 in the approximation.

We first point out that no generic algorithm can be better than 2-competitive in this setting, even

if it has access to the (stronger) GAPδ routine. Our main result is a generic algorithm that efficiently

computes a 6-approximation to the optimal ε-convex Pareto set.

5.3.2.1 Lower Bounds

By adapting the argument in Theorem 5.3.2, we can show the following:

Theorem 5.3.9. For two objectives, no generic algorithm having oracle access to GAPδ for con-

structing a small ε-convex Pareto set can be better than 2-competitive.

Proof. The proof of the lower bound is along the lines of Theorem 5.3.2. See Figure 5.3 for an

illustration. Consider the instance S = {pi, qi, ri | i ∈ [k]} as described in the proof of The-

orem 5.3.2 and its convex Pareto set CP (S) = {pi, ri | i ∈ [k]}. Now add the set of points

E = {p′i, r′i | i ∈ [k]}, where each p′i (resp. r′i) is “slightly better” than pi (resp. ri) in both ob-

jectives, so that the GAPδ routine cannot distinguish between these two points, unless δ becomes

exponentially small in the size of the instance. If our input instance is the set S, then its smallest

ε-convex Pareto set contains exactly k points (namely the qi’s). But, if our instance is the set S ∪E

then we claim that the smallest ε-convex Pareto set contains exactly 2k points. This is not difficult

to see. It follows by inductively arguing that we must pick at least two points from each “cluster” to

guarantee an ε-approximation. �

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 102

p

q

r

'p

'q 'r

Figure 5.3: Illustration of factor 2 lower bound for generic algorithms with approximate GAPδ.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 103

5.3.2.2 Upper Bound

In this section we give our main algorithmic result for this chapter: a factor-6 approximation al-

gorithm (factor-3 for the convex setting) for the problem of computing a minimum size ε-convex

Pareto set, that is applicable to all discrete bi-objective problems that possess a polynomial Combδ

routine. (We remark that if the GAPδ routine is available, we can get a 3-approximation for discrete

problems too.)

In this case – as opposed to the previous section, where the Comb routine is available exactly –

we can access a scaled version of the lower envelope, rather than the lower envelope itself. So, in a

sense, we need to somehow compare the size of the optimal ε′-CP to that of the optimal ε-CP, where

ε′ < ε.

The algorithm is based on the following geometric lemmas. The first one is for the convex

setting and the second for the discrete.

Lemma 5.3.10 (convex objective space). Let A ⊆ R2
+ be a discrete set of points. For any ε > 0

and any ε′ > 0 satisfying 1 + ε′ ≥
√

1 + ε, we have: |CP ∗C(A, ε′)| ≤ 3 · |CP ∗C(A, ε)|.

Proof. Fix an optimal ε-CP setCP ∗C(A, ε) = {q∗1, . . . , q∗k} constructed using the algorithm Explicit-

Convex-2D (described in Section 5.2.1). We will establish the existence of an ε′-CP setCPC(A, ε′) =

{p1, . . . , pr} such that r ≤ 3k − 1. To achieve this, we make essential use of the way the greedy

algorithm Explicit-Convex-2D works. First, recall that q∗i ∈ LE, i ∈ [k]. To compute CP ∗C(A, ε),

we select (the leftmost point) q∗1 as the point of LE having x-coordinate equal to (1+ ε)xmin. More-

over, point q∗i+1 is the rightmost point of LE that is ε-visible from q∗i , i.e. the line segment q∗i q
∗
i+1

supports LE′ε.

Consider the lower envelope LE = LE(A) and its scaled versions – by factors of (1 + ε′) and

(1 + ε) respectively – LE′ε′ and LE′ε. We will prove the following:

Claim 5.3.11. For all i ∈ [k], there exists a set of solution points CPi = {p1, . . . , p3i−1} such that

(i) p1 (1 + ε′)-covers the leftmost point of A, (ii) any two consecutive points in CPi are ε′-visible

from each other and (iii) we have p3i−1 ≡ q∗i .

Lemma 5.3.10 follows from the above claim for i = k, i.e. if we set CPC(A, ε′) = CPk.

Indeed, CPk is an ε′-CP set for A, due to Lemma 5.2.5, and it has cardinality (at most) 3k − 1 by

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 104

the claim above. To prove the claim, we proceed by induction on i.

Basis (i = 1): For the base case we need to select points p1, p2 that are ε′-visible from each

other such that x(p1) ≤ (1 + ε′)xmin and x(p2) ≥ x(q∗1), where xmin
.
= min{x(p) | p ∈ A}.

Recall that q∗1 is the point of LE having x(q∗1) = (1 + ε)xmin. We select p1 to be the point of LE

having x(p1) = (1 + ε′)xmin and p2 = q∗1 . We need to argue that q∗1 is ε′-visible from p1. To wit:

From the properties of visibility, it is clear that any point q ∈ LE ε′-sees the point q′ ∈ LE that

satisfies x(q′) = (1 + ε′)x(q). From this we get the desired result because, by our choice of ε′,

x(q∗1) ≤ (1 + ε′)x(p1).

Inductive step: Suppose the claim is true for some i ∈ [k − 1]. We will show that it holds for

i + 1. In particular, we will select three points p3i+j ∈ LE, j = 0, 1, 2, – ordered by increasing

x-coordinate – so that consecutive pairs are ε′-visible and such that x(p3i+2) ≥ x(q∗i+1). It is then

clear that the set CPi+1 = CPi ∪ {p3i, p3i+1, p3i+2} satisfies the properties of Claim 5.3.11.

Let α ≡ q∗i and β ≡ q∗i+1. Consider the line defined by the segment αβ. This line supports

LE′ε, i.e. it lies below it and there exists some vertex v ∈ CP (A) (not necessarily unique) such

that αβ intersects LE′ε at the point (1 + ε)v. Also consider the line parallel to αβ point-wise scaled

(down) by a factor of (1 + ε′)/(1 + ε). It is clear that this line supports LE′ε′ and that it goes through

the point (1 + ε′)v. Let α′ and β′ denote the intersection points of this scaled line with LE, so that

x(α′) < x(β′). (See Figure 5.4 for an illustration.) We set p3i = α′, p3i+1 = β′ and p3i+2 = q∗i+1.

By construction, α′ ε′-sees β′. The main part of the proof involves showing that α ≡ p3i−1 ε
′-sees

α′ and β ε′-sees β′.

We now show, via a geometric argument, that α ε′-sees α′, the argument for β and β′ being

symmetric. Consider the line segment αα′. We claim that no point of LE′ε′ intersects this seg-

ment. (This clearly implies the desired result, since both α and α′ belong to LE.) To see this,

we observe that the points of LE′ε′ eligible to intersect αα′ must have x-coordinate in the interval

[(1 + ε′)x(α), (1 + ε′)x(α′)]. (These points are drawn in gray color in Figure 5.4.) Note that these

points of LE′ε′ are exactly the (1 + ε′)-scaled versions of LE(αα′) – the subset of LE with end-

points α and α′. We denote this set by (1 + ε′) · LE(αα′). Clearly, the set of points LE(αα′) lies

above the line α′β′. That is, if α′β′ = {(x, y) ∈ R2 | c1x + c2y = 1, c1, c2 > 0}, then for each

s = (x(s), y(s)) ∈ LE(αα′) we have c1x(s) + c2y(s) ≥ 1. This in turn implies that its (1 + ε′)-

scaled version s′ = (1 + ε′) · s ∈ (1 + ε′) · LE(αα′) satisfies c1x(s′) + c2y(s′) ≥ 1 + ε′. Now, by

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 105

LE

LE'
ε

'
LE'

ε

a

'a

'β

v

β

x

y

Figure 5.4: Illustration of (the proof of) Lemma 5.3.10. The figure clearly indicates that the pairs

of points (α, α′) and (β, β′) are ε′-visible from each other with respect to LE′ε′ . The bold gray

segments correspond to (1 + ε′) · LE(αα′) and (1 + ε′) · LE(ββ′).

definition we have αβ = {(x, y) ∈ R2 | c1x+c2y = (1+ε)/(1+ε′)} and (1+ε)/(1+ε′) ≤ 1+ε′

by our choice of ε′. Therefore, the segment (1 + ε′) ·LE(αα′) lies above the line αβ, which clearly

implies these points do not intersect the line segment αα′. This completes the proof of Claim 5.3.11

and hence also of Lemma 5.3.10. �

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 106

Since for any ε > 0 and any finite set A ∈ R2
+, it holds |CP ∗D(A, ε)| ≤ 2 · |CP ∗C(A, ε)|, the

previous lemma directly implies that |CP ∗D(A, ε′)| ≤ 6 · |CP ∗D(A, ε)| as long as ε′ ≥
√

1 + ε − 1.

However, we can directly prove a better bound by a discrete analogue of the geometric lemma.

Lemma 5.3.12 (discrete objective space). Let A ⊆ R2
+ be a discrete set of points. For any ε > 0

and any ε′ > 0 satisfying 1 + ε′ ≥
√

1 + ε, we have: |CP ∗D(A, ε′)| ≤ 3 · |CP ∗D(A, ε)|.

Proof. The proof is in the same spirit as the one for the convex case above. However, the discrete

setting requires a more careful analysis. This is due to the fact that there is more freedom in the

structure of the optimal solution. Recall for example that, in this case, the points of an optimal ε-CP

set cannot be assumed to belong to the lower envelope.

We fix an optimal ε-CP set, denoted by CP ∗D(A, ε) = {q∗1, . . . , q∗k}, constructed using the

algorithm Explicit-Discrete-2D (described in Section 5.2.2). We will establish the existence of an

ε′-CP set, CPD(A, ε′) = {p1, . . . , pr} such that r ≤ 3k. We similarly proceed by an inductive

argument that exploits the optimal algorithm Explicit-Discrete-2D. The main difference here, as

compared to the convex case above, is the fact that the points q∗i do not necessarily belong to LE.

Moreover, it may be the case that these points lie above LE′ε′ . As a consequence, the inductive

argument becomes more intricate. We prove the following (by induction on i):

Claim 5.3.13. For all i ∈ [k], there exists a set of solution points CPi = {p1, . . . , p3i} such that (i)

p1 (1 + ε′)-covers the leftmost solution point, (ii) any two consecutive points in CPi are ε′-visible

from each other and (iii) we have either p3i = q∗i , in which case q∗i lies below LE′ε′ , or p3i is a

vertex of LE to the right of q∗i .

Similarly, Lemma 5.3.12 follows from the above claim for i = k, i.e. if we set CPD(A, ε′) =

CPk. Indeed, CPk is an ε′-CP set for A, due to Lemma 5.2.13, and it has cardinality (at most) 3k

by the above claim.

We now proceed with the proof of Claim 5.3.13. The proof is by induction on i.

Basis (i = 1): Recall that q∗1 satisfies x(q∗1) ≤ (1 + ε)xmin, where xmin
.
= min{x(p) | p ∈ A}.

Similarly, p1 must satisfy x(p1) ≤ (1 + ε′)xmin; we pick p1 to be the rightmost vertex of LE

that satisfies this constraint. Clearly, p1 ε
′-sees the leftmost vertex v that lies to the right of the line

x = (1+ε′)xmin; we set p2 = v. If x(v) > (1+ε)xmin, we are done. Otherwise, note that p2 ε
′-sees

the rightmost vertex v′ that lies to the left of the line x = (1 + ε)xmin (since x(v′) ≤ (1 + ε′)x(v)).

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 107

Now, if x(q∗1) ≤ x(v′), we set p3 = v′. (In fact, in such a case, we can assume that q∗1 ≡ v′, since

v′ ∈ E1(ε) and v′ �ε q∗1 .) Now, if x(v′) < x(q∗1) ≤ (1 + ε)xmin, we set p3 = q∗1 and claim that q∗1

lies below LE′ε′ . For the sake of contradiction assume that this is not the case. Then, given that v′ is

the rightmost vertex in the interval [(1 + ε′)xmin, (1 + ε)xmin] we get that y(q∗1) > y(v′), i.e. q∗1 is

a dominated point, a contradiction. This completes the analysis of the base case.

Inductive step: Suppose the claim is true for i ∈ [k−1]. We will show it is also true for i+1. To

do this, we will select three solution points p3i+j , j = 1, 2, 3, – ordered by increasing x-coordinate

– such that any two consecutive pairs are ε′-visible and the setCPi+1 = CPi∪{p3i+1, p3i+2, p3i+3}

satisfies Claim 5.3.13.

Consider two consecutive points q∗i , q
∗
i+1 ∈ CP ∗D(A, ε). Recall that q∗i+1 is a best point ε-visible

from q∗i . Let us extend the line q∗i q
∗
i+1 so that it intersects the lower envelope LE at the points α

and β. Since q∗i and q∗i+1 are ε-visible from each other, the line αβ ≡ q∗i q
∗
i+1 lies below LE′ε. Also

consider the line α′β′ constructed by scaling αβ point-wise by a factor (1 + ε′)/(1 + ε)), where

α′ and β′ are the intersection points with LE. By definition, α′ ε′-sees β′ and, by the argument of

Lemma 5.3.10, we immediately get:

Fact 5.3.14. The subsets (1 + ε′) · LE(αα′), (1 + ε′) · LE(ββ′) of LE′ε′ lie above the line αβ.

However, as already noted, the points α′ and β′ do not necessarily correspond to solution points;

in general, we expect them to be interior points of some edge of LE. Now consider the adjacent

vertices of the points α, α′, β and β′. We use subscripts l and r to denote “left” and “right”

respectively. Let O be the origin.

We select the three additional solution points as follows: We set p3i+1 = α′r and p3i+2 = β′l ,

while p3i+3 depends on the position of q∗i+1 with respect to the line Oβ′. If q∗i+1 lies to the right of

this line, we set p3i+3 = q∗i+1. Otherwise, we set p3i+3 = β′r.

We now proceed with the analysis. It is first clear that p3i+1 and p3i+2 are ε′-visible from each

other. We first need to show that α′r is ε′-visible from p3i. By the induction hypothesis, we have two

subcases, depending on the position of p3i, which we analyze in tandem. First, we observe that, by

Fact 5.3.14 above, α ε′-sees α′r. Indeed, the eligible points of LE′ε′ to intersect the segment αα′r are

precisely the points of (1+ ε′) ·LE(αα′). (Note that we now use a stronger corollary of Fact 5.3.14,

compared with the convex case.) We claim that if q∗i is below LE′ε′ , q
∗
i ε
′-sees α′r. This holds ,

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 108

essentially because q∗i lies on the line αβ. Formally, consider the segment q∗i α′r and its intersection

t with the line Oα′. It is clear that q∗i α′r lies below αβ and thus below (1 + ε′) · LE(αα′). So, q∗i t

lies below LE′ε′ and so does tα′r, since there are no vertices of LE′ε′ in the corresponding interval.

And in any case, α′r is ε′-visible from any vertex to the right of q∗i (hence, also to the right of α).

Thus, in both subcases, we get that p3i ε
′-sees α′r.

To complete the proof, it remains to argue that, if q∗i+1 lies to the right of Oβ′ then it is below

LE′ε′ and it ε′-sees β′l . The first statement is implied by Fact 5.3.14, since q∗i+1 belongs to αβ.

The argument for the second statement is symmetric to the argument of the previous paragraph

(showing that, as long as q∗i lies below LE′ε′ , it ε′-sees α′r). Finally, if q∗i+1 lies to the right of Oβ′,

it is easy to see that x(q∗i+1) ≤ x(β′r). Indeed, in this case, y(β′r) < y(β) < y(q∗i+1), so assuming

otherwise would imply that q∗i+1 is a dominated point, a contradiction. This completes the proof of

Claim 5.3.13 and hence of Lemma 5.3.12. �

By exploiting the aforementioned lemmas, we can derive the following algorithmic result.

Theorem 5.3.15. For any bi-objective problem possessing a polynomial (resp. fully polynomial)

Combδ routine, for any ε > 0, we can compute in polynomial (resp. fully polynomial) time a

6-approximation (3 in the convex case) to the smallest ε - convex Pareto set.

Proof. We first describe the algorithm and analysis for the discrete case. The algorithm and analysis

for the convex case is very similar.

We will describe an algorithm that uses a linear O(m/ε) calls to Comb, hence runs in polyno-

mial time. Consider the following procedure:

1. Compute a δ-convex Pareto setRδ of f(S(I)) by using the generic algorithm of Chapter 4 for

δ = 4
√

1 + ε− 1 (≈ ε/4 for small ε). If 4
√

1 + ε is not rational, then we pick δ to be a rational

number satisfying (1 + δ)4 ≤ 1 + ε and has bit representation O(|ε|).

2. Define ε′, ε′′ such that: 1 + ε = (1 + ε′)(1 + δ)2 and 1 + ε′′ = (1 + ε′)(1 + δ). Use the

algorithm for problem QD to compute the smallest ε′′-convex Pareto set Q of Rδ.

3. Output Q.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 109

By construction of the generic algorithm of Chapter 4, the setRδ is a δ-convex Pareto set (having

no redundant points) for the (exponentially large or infinite) set of solution points (in the objective

space) f(S(I)) and has size polynomial in the size of the instance |I| and 1/δ. In the second step,

we apply the algorithm EXPLICIT DISCRETE-2D to optimally solve the problem QD(Rδ, ε
′′), i.e.

to compute the smallest ε′′-convex Pareto set Q ⊆ Rδ of Rδ. By using the notation of the previous

section, Q = CP ∗D(R, ε′′). It is straightforward to verify that the set of solution points Q is an

ε-convex Pareto set for the original instance S(I). It is also clear that the overall algorithm runs in

polynomial time.

Now we proceed to analyze its performance. We will argue that |Q| ≤ 6|CP ∗ε (I)|. This follows

by observing that |Q| ≤ 2 · |CP ∗ε′(I)| and applying the (appropriate version of the) geometric

lemma shown above. To wit, let CPε′(I) be an ε′-convex Pareto set for S(I). (We remark that such

a set may use solution points not in Rδ.) For each solution point s ∈ CPε′(I) pick two solution

points r1, r2 ∈ Rδ whose convex combinations (1 + δ)-cover s; this can be done, since R is a

δ-convex Pareto set for S(I). By this procedure, we get a set R′ with the following properties: (i)

R′ ⊆ Rδ (ii)R′ is an ε′′-convex Pareto set for f(S(I)) (thus also forRδ) and (iii) |R′| ≤ 2|CPε′(I)|.

Therefore, we conclude that |Q| ≤ 2·|CP ∗ε′(I)|. By the geometric lemma, we have that |CP ∗ε′(I)| ≤

3|CP ∗ε (I)|. Therefore, |Q| ≤ 6 · |CP ∗ε (I)| and the proof is complete for the discrete case.

For convex problems, the algorithm is the same except that, in the postprocessing step, we

use the explicit algorithm for the convex setting, i.e. EXPLICIT CONVEX-2D. The analysis is

also identical the only difference being that |Q| ≤ |CP ∗ε′(I)|, which saves the factor of 2 in the

approximation ratio.

�

We remark that if the objective space is convex, we can alternatively use the algorithm Convex-

2D for problem QC in the second step and save a factor of 2 in the approximation. However, as

noted in the previous subsection, if the objectives are non-linear, there is no general way to find

a set of solutions (as opposed to a set of solution points) with this cardinality. Moreover, if an

approximate GAP routine is available, we can save a factor of 2 in the approximation.

Theorem 5.3.16. For any bi-objective problem possessing a (fully) polynomial GAPδ routine, for

any ε > 0, we can compute a 3-approximation to the smallest ε - convex Pareto set in (fully)

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 110

polynomial time.

Proof. If GAPδ is available we save a factor of 2 by computing a δ-Pareto set in the first step.

The algorithm (and the analysis) are essentially the same. We compute a δ-Pareto set for the given

instance for δ ≤ 4
√

1 + ε − 1 using the original algorithm of [PY1] and then use the algorithm for

problem QD to find its smallest ε′′-convex Pareto set. The analysis is essentially the same. The only

difference now is that |Q| ≤ |CP ∗ε′(I)|. �

Relaxed ε: Suppose that we are allowed to output an ε′-convex Pareto set for some ε′ > ε. Then,

by using a similar approach we can compute an (essentially optimal) factor 2 approximation to the

smallest ε-convex Pareto set, if we spend time proportional to 1/(ε′ − ε).

Theorem 5.3.17. For any bi-objective optimization problem possessing a (fully) polynomial Combδ

routine, for any ε′ > ε > 0, we can compute an ε′-convex Pareto set CPε′ such that |CPε′ | ≤

2|CP ∗ε | in (fully) polynomial time.

Proof. Consider a suitable small rational δ > 0 such that 1 + ε′ ≥ (1 + ε)(1 + δ)2. For small ε,

we can pick δ so that 1/δ = O(1/(ε′ − ε)). Consider the following algorithm: Given an instance,

ε′ and ε, construct a δ-convex Pareto set CPδ for this instance by using the algorithm of Section 3.

(CPδ has polynomial size and does not contains any redundant points.) Then, compute the smallest

(1 + ε)(1 + δ)-convex Pareto set of CPδ (by using the algorithm for QD). It is not hard to see that

the produced set is an ε′-Pareto set with the desired cardinality bound. �

Remark 5.3.18. If the GAPδ routine is available, we can compute an ε′-convex Pareto setCPε′ such

that |CPε′ | ≤ |CP ∗ε |. The same holds if the objective space is convex. The only difference is that,

if the GAPδ routine is available, in the first phase we construct a δ-Pareto set, while for the convex

case, we use the algorithm that is allowed to selects convex combinations of solution points in CPδ

(algorithm for QC).

Computing the best k solutions: We now address the dual problem: We want to compute a set of

k solutions that collectively approximate as closely as possible the Pareto curve. That is, we want to

find a set S of k solutions that minimizes the value of the ratio ρ = 1 + ε such that S is an ε-convex

Pareto set for the whole set of solutions. The above algorithm (for the relaxed ε) can be used as an

approximate decision procedure to show the following.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 111

Theorem 5.3.19. For any bi-objective optimization with a polynomial Combδ routine, and for any

θ > 0, we can efficiently compute 2k points that approximate the smallest ratio ρ∗ = 1 + ε∗ for

which there exists an ε∗-convex Pareto set with at most k points to a factor of 1 + θ.

Proof. Let δ > 0 be a suitable small rational such that (1 + δ)2 approximates from below 1 + θ.

Consider the following set of candidate ratios: ρi = (1 + δ)i, for i = 0, 1, . . . , 2m/ log(1 + δ) + 1.

It is clear that when i takes its maximum value 2m/ log(1 + δ) + 1, then any single solution point

suffices to ρi-cover the feasible space.

The algorithm works as follows: We perform a binary search procedure among the candidate

ratios ρi by calling the relaxed ε algorithm described above for 1+ε′ = ρi and 1+ε = (1+ε′)/(1+δ)

at each step of the search until we find the minimum value of i∗ for which the relaxed algorithm

returns 2k points.

Since the relaxed algorithm returns more than 2k points when called with 1 + ε′ = (1 + δ)i
∗−1,

it follows that ρ∗ ≥ (1 + δ)i
∗−2. Therefore, the ratio achieved by the algorithm is ρi∗/ρ∗ which is

at most 1 + θ by the definition of δ.

It is also easy to see that the overall procedure uses a polynomial number of calls to the relaxed

algorithm; hence, it runs in polynomial time. �

It is easy to see that the above result is best possible with respect to its dependence on the

number of points it outputs; indeed, with 2k− 1 points we can have no guarantee on the ratio, given

the Combδ routine only.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 112

5.4 d Objectives

In this section we consider the problem of computing near-minimum cardinality ε-convex Pareto

sets for problems with d objectives, where d > 2 is assumed to be a constant. In order to design

generic algorithms, for problems possessing a polynomial Combδ (or GAPδ) routine, we analyze

first (Section 5.4.1) the (very special) case that the set of points is given explicitly in the input.

In Section 5.4.2, we give our generic algorithms. Analogously to the bi-objective case, there are

two versions of the considered problem, depending on the nature of the objective space (convex or

discrete).

5.4.1 Explicitly Given Points

Problem Definition We consider the problem of computing the smallest ε-convex Pareto set of an

explicitly given set of points A ⊆ Rd+. We can assume that the objectives are to be minimized. The

results can be easily extended to the case of maximization or mixed objectives. We consider the

following versions of the problem:

• ProblemQD(A, ε): The input set of points is the discrete setA and we are only allowed to use

points ofA for the approximation. Denote the optimal solution to this problem byCP ∗D(A, ε).

This variant corresponds to the case of a discrete objective space.

• Problem QC(A, ε): The input set of points is convex, in particular the convex polytope iden-

tified with the convex hull of the discrete set A. In this case we are allowed to use all points

in CH(A) for the approximation. Denote the optimal solution to this problem by CP ∗C(A, ε).

This variant corresponds to the case of a continuous (convex) objective space.

Our main result in this section is the following:

Theorem 5.4.1. a. For any fixed d, we can efficiently approximate the size OPTε of the optimal

ε-convex Pareto set within a factor of Od(log OPTε).

b. In particular, for d = 3, we can efficiently approximate OPTε within a constant factor.

Remark 5.4.2. The notation Od(·) means that the constant inside the O(·) depends on d. More

specifically, the approximation guarantee isO(d log(dOPTε)) for problemQD andO(d2 log(dOPTε))

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 113

for problem QC. Moreover, for d = 3, the constant factor achieved for QC is three times the corre-

sponding factor for QD.

To formally present our results, we need to generalize the definitions and notation from Section 5.2

to higher dimensions. Throughout this section, A will denote a discrete set of points in Rd+. If S is

a (non-necessarily discrete) subset of Rd+, we denote by P (S) (resp. CP (S)) its Pareto set (resp.

convex Pareto set).

Definition 5.4.3. We define the lower envelope of the set A, denoted by LE(A), as the Pareto set of

the convex hull of A, i.e. LE(A) = P (CH(A)).

We remark that the lower envelope of A geometrically corresponds to the union of all facets

of its convex hull whose inward normal vector has positive coefficients. Also notice that the set of

extreme points of LE(A) is identified with CP (A). We similarly define its “scaled” counterpart

LE′ε = (1 + ε) · LE(A).

Definition 5.4.4. For two points p, q ∈ Rd+ the ratio distance between p and q is defined by:

RD(p, q) = max{maxi(pi/qi), 1}.

Analogously to the bi-objective case, the ratio distance between p and q is the minimum value

ρ∗ = 1 + ε∗ of the ratio ρ such that p ρ-covers q. It is easy to see that logRD(·, ·) satisfies the

(directed) triangle inequality. Indeed, consider a triple of points u, v, w ∈ Rd+. We will show that

logRD(u,w) ≤ logRD(u, v)+logRD(v, w) or equivalentlyRD(u,w) ≤ RD(u, v)·RD(v, w).

By definition, for every coordinate i ∈ [d] we have: ui ≤ RD(u, v) · vi and vi ≤ RD(v, w) · wi.

Hence, u ≤ RD(u, v) · RD(v, w) · w, which implies that RD(u,w) ≤ RD(u, v) · RD(v, w) as

desired.

Before we present the proof of Theorem 5.4.1, we briefly discuss the complexity of the problems

QD and QC. Recall that for d = 2 we showed in Section 5.2 that both problems can be solved

(exactly) in polynomial time. For d ≥ 3, we conjecture that both these problems are NP-hard.

A first complication arises from the fact that QC is a continuous problem. Since there are no a

priori guarantees on the bit complexity of the points selected in an optimal solution, it is not clear

that, for d > 2, the problem is even in NP. (We showed that this is the case for d = 2.) However, if

we only consider points in CP (A) for the computation of a near optimum ε-convex Pareto set, we

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 114

do not lose more than a factor of d in the approximation. This is established by a simple but crucial

observation. To phrase it formally, we define an intermediate problem:

Definition 5.4.5. Define the problem QC,R(A, ε): Given A ⊆ Rd+ and ε > 0, compute the smallest

ε-convex Pareto set ofA that is allowed to use points only from its convex Pareto setCP (A). Denote

the optimal solution to this problem by CP ∗C,R(A, ε).

This problem is a restriction to both QC(A, ε) and QD(A, ε) (i.e. any feasible solution to

QC,R(A, ε) is feasible for the other problems). It therefore follows that

|CP ∗C,R(A, ε)| ≥ max{|CP ∗C(A, ε)|, |CP ∗D(A, ε)|}.

Also note that |CP ∗C(A, ε)| ≤ |CP ∗D(A, ε)|. This holds because any point of A is dominated by

some point of LE(A) which implies that any feasible solution toQD(A, ε) can be directly translated

to a feasible solution to QC(A, ε) of the same cardinality. Hence, |CP ∗C(A, ε)| ≤ |CP ∗D(A, ε)| ≤

|CP ∗C,R(A, ε)|.

The next simple observation establishes the fact that the optimal solution to QC,R(A, ε) is of

cardinality at most d times that of an optimal solution to QC(A, ε).

Claim 5.4.6. |CP ∗C,R(A, ε)| ≤ d · |CP ∗C(A, ε)|

Proof. Let CP ∗C(A, ε) = {p∗i | i ∈ [k]}. We can assume without loss of generality that for all

i ∈ [k], p∗i ∈ LE(A). This holds for the following reason: Suppose that there exists a point

p∗r ∈ CP ∗C(A, ε) that does not lie on the lower envelope of A. Then, p∗r is dominated by a point q of

the lower envelope. The set (CP ∗C(A, ε) \ {p∗r})∪{q}, is clearly an ε-convex Pareto set of the same

cardinality satisfying the assumed property.

Then, p∗i can be expressed as a convex combination of (at most) d vertices of CP (A). Indeed,

p∗i belongs to a facet F of the lower envelope. Since F is a (d − 1) dimensional convex polytope,

the claim follows from Carathéodory’s lemma. The union of these d-sets of vertices is a solution to

CP ∗C,R(A, ε) having the desired cardinality. �

Corollary 5.4.7. |CP ∗C,R(A, ε)| ≤ d · |CP ∗C(A, ε)| ≤ d · |CP ∗D(A, ε)|

We are now ready to prove Theorem 5.4.1.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 115

Proof. (Theorem 5.4.1) To prove the theorem we phrase the problem QD (and as a consequence

QC,R) as a hitting set problem on a set system of bounded VC–dimension. For d = 3, an additional

property of the set system implies a constant factor approximation. We remark here that the corre-

sponding set system is of size roughly O(nd), where n = |A|, and is not given explicitly; our input

is the discrete set A and the error ε (i.e. size of the input O(dn+ |ε|)). It is therefore crucial for the

dimension d to be fixed so that the set system is constructible in polynomial time.

We give the reduction for the problemQD and then argue that, by a trivial modification, it holds

for QC,R also.

Lemma 5.4.8. For any fixed d, there exists a polynomial time constructible set systemF = F(A, ε)

with the property that there exists a bijection between hitting sets for F and feasible solutions to

QD(A, ε).

Proof. Recall that our goal in problem QD(A, ε) is to compute a minimum cardinality subset of

P (A) such that any point of CP (A) is (1 + ε)-covered by a convex combination of selected points.

We start with some notation. As is standard, we express a hyperplane h in Rd (that does

not go through the origin) in the form h = {x ∈ Rd | αh · x = 1}. Let H denote the set of

supporting hyperplanes of LE(A) with positive coefficients. In particular, this means that each

h ∈ H can be expressed as h = {x ∈ Rd | αh · x = 1}, such that the following conditions

are satisfied: (i) αh ∈ Rd+, (ii) αh · v ≥ 1 for all v ∈ CP (A) and (iii) αh · ph = 1 for some

ph ∈ CP (A). Now for h ∈ H denote by h1+ε = {x ∈ Rd | αh · x = 1 + ε} the “boosted”

hyperplane obtained from h by scaling each of its points by a (1 + ε) factor in each coordinate.

Also denote by H1+ε = {h1+ε | h ∈ H} the “boosted” set of hyperplanes corresponding to H. We

will say that a point is below the hyperplane h1+ε ∈ H1+ε if it lies in the closed negative halfspace

h−1+ε = {x ∈ Rd | αh · x ≤ 1 + ε}. If the inequality is strict, we say that the point is strictly below

the hyperplane, etc.

Consider the following partition of H1+ε into equivalence classes, each class hi having the

following property: Any two hyperplanes in hi cannot distinguish any two points of P (A); that is,

all points of P (A) lie on the “same side” of the hyperplanes in the class (either below or strictly

above). We denote by H1+ε = {hi | i ∈ [mε]} the collection of equivalence classes, by h−i =⋂
h∈hi h

− the set of points in Rd that lie below all the hyperplanes in the class hi and by H−1+ε =

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 116

{h−i | i ∈ [mε]} the corresponding collection.

The set system F contains an “element” for each point of P (A) and a subset of P (A) for

each hi; in particular, the subset that lies below (all the hyperplanes in the class) hi. That is,

F = (P (A),S(A, ε)), where S(A, ε) = {P (A) ∩ h−i | i ∈ [mε]}. By slight abuse of notation,

we will denote S(A, ε) = P (A) ∩H−1+ε. As is standard, we say that a point p ∈ P (A) “hits” a

hyperplane class hi if p belongs to h−i .

Clearly, the partition (thus, its cardinality mε) depends on the parameter ε. An upper bound of

mε = O(nd) follows by geometric duality and the fact that an arrangement of n hyperplanes in Rd

defines O(nd) cells. It is also not hard to show that the family P (A) ∩H−1+ε can be constructed in

polynomial time; this can be done by standard techniques. (We have a simple efficient construction

in time O(n2mε)). The following claim proves the desired equivalence:

Claim 5.4.9. There is a bijection between hitting sets of F and solutions to QD.

Proof. (⇒) Let VF = {vi | i ∈ [k], vi ∈ P (A)} be a hitting set of F . We want to show that VF is

an ε-convex Pareto set. For the sake of contradiction, suppose that no convex combination of the vi’s

(1+ε)-covers some point v ∈ CP (A). Consider the lower envelope LE′ of the set VF ∪{(1+ε)v};

the aforementioned assumption means that the point (1 + ε)v is a vertex of LE′. Thus, there exists a

direction c ∈ Rd+ such that (1 + ε)v is the unique minimizer of (the linear function) c · x over LE′,

i.e. for all i ∈ [k] it holds c · (1 + ε)v < c · vi. Now let v∗ ∈ CP (A) denote some minimizer of

c · x over LE(A); hence, for all p ∈ CP (A) we have c · v∗ ≤ c · p. We claim that the hyperplane

h′ = {x ∈ Rd | αc · x = 1 + ε}, where αc = c/(c · v∗) is inH1+ε and is not “hit” by VF .

For the first part of the claim, it is easy to verify that the hyperplane h′/(1 + ε) = {x ∈ Rd |

αc · x = 1} is in H. Indeed, since c, v∗ ∈ Rd+ it follows that αc ∈ Rd+ (property (i)); by the

definition of v∗ we get αc · p = (c · p)/(c · v∗) ≥ 1 (property (ii)) and the definition of αc implies

αc · v∗ = 1 (property (iii)). For the second part of the claim we need to show that for all i ∈ [k] it

holds αc ·vi ∈ (h′)+ or equivalently αc ·vi > 1 + ε. This follows from the sequence of inequalities:

αc · vi = (c · vi)/(c · v∗) ≥ (c · vi)/(c · v) > 1 + ε, where the first inequality is a consequence of

the definition of v∗ and the second of the definition of v. This completes the argument and provides

the desired contradiction.

(⇐) Let CPε = {vi | i ∈ [k], vi ∈ P (A)} be an ε-convex Pareto set of A. We will show

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 117

that each h′ ∈ H1+ε is “hit” by some point in CPε, i.e. that for each h′ ∈ H1+ε there exists some

vh′ ∈ CPε satisfying vh′ ∈ (h′)−. Recall that h′ is of the form αh′ · x = 1 + ε with αh′ ∈ Rd+
and αh′ · v = 1 for some v ∈ CP (A). By definition, the point v is (1 + ε)-covered by a convex

combination of elements in CPε, i.e. there exist {λi}ki=1 with λi ≥ 0 and
∑k

i=1 λi = 1 such that∑k
i=1 λi ·vi ≤ (1+ε)v. Since αh′ has only positive coefficients it follows that:

∑k
i=1 λi(αh′ ·vi) ≤

(1+ε)(αh′ ·v) = 1+ε. Thus, we must have that αh′ ·vi ≤ 1+ε for some vi ∈ CPε. This completes

the proof of the claim. �

The proof of Lemma 5.4.8 is now complete. �

Since QC,R is a special case of QD the same reduction essentially works for this problem also.

The only difference is that the set of “elements” for the corresponding set system (call it F ′) is

the convex Pareto set CP (A) and the hyperplane classes are defined with respect to CP (A) (as

opposed to P (A)). For the rest of the proof, we focus on F , but all subsequent properties trivially

hold for F ′ too.

Lemma 5.4.8 immediately implies an O(d log n) factor approximation algorithm for both prob-

lems in hand. However, we can do better by exploiting additional properties of the set systems. In

particular, we point out the following:

Claim 5.4.10. For any (discrete) set A ⊆ Rd+ and ε > 0 it holds: VC-dim(F(A, ε)) ≤ d +

1. Moreover, for d = 3, F(A, ε) admits an 1/r-net of cardinality O(r) that is constructible in

polynomial time.

Proof. Both statements of the claim follow by noting that F(A, ε) is a “special case” of the set

system of (closed) halfspaces in Rd. This set system has a finite set X of points in Rd as its set of

“elements” and its collection of sets consists of all subsets of X that can be obtained by intersecting

X with a halfspace.

The latter set system is well-known to have VC–dimension equal to d+ 1. Moreover, 1/r-nets

of size O(dr · log(dr)) can be constructed for it in poly(r, |X|) time, for any fixed d [BCM]. In

particular, for d = 3, the construction of [MSW] yields a deterministic polynomial time algorithm

to construct an 1/r-net of size O(r). �

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 118

The theorem now follows from the aforementioned by using the approximation algorithms of

[BG, ERS] to compute an approximate solution to the hitting set problem for F . If the net-finding

algorithm produces an 1/r-net of size s(r), the approximation guarantee of these algorithms is

s(|OPTε|)/|OPTε|. The case of general (fixed) d follows since s(r) = O(dr · log(dr)). For d = 3,

we have that s(r) = cr, where c is a constant, which implies a factor c approximation.

Therefore, problems QD and QC,R can be approximated within a factor of O(d log(dOPTε))

for general d and within a factor of c for d = 3. Finally, recall that in the case of problem QC,

we lose an additional factor of (at most) d by ignoring the non-extreme points. Thus, QC can

be approximated within a factor of O(d2 log(dOPTε)) for general d and within a factor of 3c for

d = 3. �

An illustration of (part of) the set system F for a small two dimensional instance is given in

Fig. 5.5.

Theorem 5.4.11. If d is unbounded, even if all the solution points are given explicitly in the input,

for any ε > 0, we cannot approximate the smallest ε-convex Pareto set on d objectives in polynomial

time to a factor better than Ω(log d), unless P = NP .

Proof. The proof is via a gap-preserving reduction from the Set Cover problem (which is known to

have this property [LY, Fei, RS]): Given a universe of elements U = {u1, u2, . . . , un} and a family

S = {S1, S2, . . . , Sl} of proper subsets of U (such that
⋃
Si∈S Si = U), select a minimum number

of sets from S such that their union is U . The result holds for both variants of the problem (i.e.

problems QD, QC).

The reduction is by a modification of the corresponding reduction in [VY]. It is as follows: We

define a set A of n+ l + 1 points in n-dimensions (i.e. d = n). For each element ui ∈ U (i ∈ [n]),

add a point pi whose ith coordinate is 1/(1+ε) and all other coordinates are at∞ (a very large finite

number will also do). For each set Sj ∈ S (j ∈ [l]), add a point qj such that the ith coordinate of qj

is 1 if ui ∈ Sj and n(1 + ε)3 otherwise. We also add a point r with value (1 + ε) in all coordinates.

It is easy to see that all points of A are vertices of its lower envelope.

We mention the basic (straightforward) properties of the reduction. First, the point r is not

(1 + ε)-covered by any other point. Second, r (1 + ε)-covers all the qj’s and does not (1 + ε)-cover

any pi. Third, each qj (1 + ε)-covers exactly those pi’s such that ui ∈ Sj . Last, no pi (1 + ε)-covers

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 119

x

y

1
p

2
p

3
p

Figure 5.5: An illustration of the set system F . It is assumed for simplicity that A = CP (A). The

shaded region represents the hyperplane class that lies above the set of points {p2, p3}.

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 120

any other point.

By using the above properties, it is easy to show the following: Any ε-convex Pareto set of A

must be of cardinality at least equal to the cardinality of the minimum Set Cover of (U ,S). Indeed,

in order to (1 + ε)-cover pi we need to select either pi itself or some qj such that ui ∈ Sj . Selecting

convex combinations of the qj’s does not help; a convex combination will (1 + ε)-cover pi iff for

each qj in the combination it holds ui ∈ Sj . The reduction is easily see to be gap-preserving, which

finishes the proof. �

5.4.2 Approximate Comb Routine

So far we have considered the problem of computing the smallest ε-convex Pareto set if the points

are explicitly given in the input. In this section we consider the same problem for a multi-objective

problem Π possessing a black box routine to access its solutions. We assume that either the Combδ

routine or the GAPδ routine are available.

5.4.2.1 Lower Bound

Theorem 5.4.12. For d ≥ 3, any polynomial generic algorithm having oracle access to GAPδ

cannot be c-competitive for any constant c.

Proof. The lower bound holds a fortiori if only the Combδ routine is available. However, it is not

clear that it holds when the primitives are exact.

We exploit the fact that GAPδ(b) is not uniquely defined for some points b. We construct two

sets of points S and S′ in R3 such that GAPδ cannot distinguish between them unless the error

parameter δ becomes inverse exponential in the size of the input.

Given an ε > 0 construct a set of points Q = {q1, . . . , qk} (points ordered left to right) in the

same plane (having z = z0) such that the smallest ε-convex Pareto set of Q contains all its points

CP (Q) = Q. This can clearly be done. Also consider the set Q′ = {q′1, . . . , q′k} where each q′i has

the same x and y coordinates as qi and whose z coordinate is by 1 smaller z′ = z0−1. Now choose

a point p that lies an (1 + ε) factor above the z = z0 plane and (1 + ε)-covers all the points of Q.

Moreover, we need x(q1) = minq∈Q x(q) > (1 + ε)x(p) and y(qk) = minq∈Q y(q) > (1 + ε)y(p).

Clearly, this last condition implies that no convex combination of points inQ (orQ′) (1+ε)-covers p

(because of the x and y coordinates). So, p must belong to any ε-convex Pareto set for the instances

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 121

S
.
= {p} ∪ Q and S′ .= {p} ∪ Q ∪ Q′. The smallest ε-convex Pareto set for the former set is {p},

while for the latter {p} ∪Q′.

It is easy to see that if z0 = M is exponential in the size of the input and 1/ε, the primitive

cannot distinguish between the two cases. �

5.4.2.2 Upper Bound

As a consequence of the lower bound, for d ≥ 3 objectives we are forced to compute an ε′-convex

Pareto set, where ε′ > ε, if we are to have a guarantee on its size. We show in this section that for

any ε′ > ε, we can get a constant factor approximation for d = 3 and a logarithmic approximation

for any fixed d if we spend time proportional to 1/(ε′ − ε). This positive result applies to all d-

objective problems that possess a polynomial Combδ routine. We note that if the (stronger) GAPδ

routine is available, the corresponding guarantees can be improved by a factor of d.

Our main positive result for the case of general (fixed) d is the following theorem that applies

to all d-objective problems that possess a polynomial Combδ routine:

Theorem 5.4.13. 1. For any ε′ > ε there exists a polynomial time generic algorithm that computes

an ε′-convex Pareto set Q such that |Q| ≤ O(d2 log(dOPTε)) ·OPTε.

2. For d = 3, we can efficiently compute a constant factor approximation to OPTε.

We first prove the following lemma that relates the approximability of problem QC,R with the

problem in hand. Let ε > 0 be a given rational number. For any ε′ > ε, we can find a δ > 0 such

that 1/ δ = O(1/(ε′ − ε)) satisfying 1 + ε′ ≥ (1 + ε)(1 + δ)2.

Lemma 5.4.14. Suppose that there exists an r-factor approximation algorithm forQC,R. Then, for

any ε′ > ε, we can compute an ε′-convex Pareto set Q, such that |Q| ≤ drOPTε using O((m/δ)d)

Combδ calls.

Proof. The generic algorithm proceeds in two phases; in the first phase, we compute a δ-convex

Pareto set, by using the oblivious algorithm of Chapter 4 and in the second phase we post-process

the points produced by the latter algorithm by using the r-approximation algorithm for QC,R as a

black box.

So, suppose that Rδ is the output of the aforementioned algorithm; Rδ is a δ-convex Pareto

set (without redundant points) for the (exponentially large or infinite) feasible space S and has size

CHAPTER 5. SUCCINCT APPROXIMATE CONVEX PARETO SETS 122

polynomial in the size of the input and 1/δ. We apply the r-approximation algorithm for QC,R on

input Rδ to produce a set Q ⊆ Rδ of solution points whose convex combinations (1 + ε)(1 + δ)-

cover Rδ. It is easy to see that Q is an ε′-convex Pareto set for the feasible space S. Indeed, for any

solution point p ∈ S there exists a convex combination of points r1, r2, . . . , rl in Rδ that (1 + δ)-

covers p. Also, each ri is (1 + ε)(1 + δ)-covered by some convex combination of points in Q.

Therefore, there exists a convex combination of points in Q that (1 + ε)(1 + δ)2-covers p.

We will now argue that |Q| ≤ drOPTε. Let R∗ denote a minimum cardinality subset of Rδ

whose convex combinations (1 + ε)(1 + δ)-cover Rδ. By assumption we have that |Q| ≤ r|R∗|.

The proof is complete by the following claim:

Claim 5.4.15. |R∗| ≤ d ·OPTε

Proof. Let CPε be any ε-convex Pareto set for S. It suffices to show that there exists an (1 + ε)(1 +

δ)-convex cover C forRδ of cardinality at most d · |CPε|. Recall thatRδ is a δ-convex Pareto set for

S (having no redundant points). Thus, for any solution point s ∈ CPε ⊆ S, there exists a convex

combination of points in Rδ that (1 + δ)-covers s. C is constructed as follows: For each s ∈ CPε

pick a set of at most d points in Rδ whose convex combinations (1 + δ)-cover s. It is clear that

|C| ≤ d|CPε| and that C is an (1 + ε)(1 + δ)-convex cover for S (and thus also for Rδ) - using

points only from Rδ. �

�

Recall from Section 5.4.1 that problemQC,R can be approximated within a factor ofO(d log(dOPTε))

for general d and within a constant factor for d = 3. Theorem 5.4.13 follows by combining this fact

with Lemma 5.4.14.

We remark that there is a direct analogue of the above lemma (without the extra factor of d) for

the case that the GAPδ routine is available. In this case, we can save a factor of d by computing a

δ-Pareto set in the first step followed by the approximation algorithm for problem QD.

CHAPTER 6. THE CHORD ALGORITHM 123

Chapter 6

The Chord Algorithm

6.1 Introduction

The Chord algorithm is a popular, simple method for the succinct approximation of planar curves,

which is widely used, under different names, in a variety of areas, such as, bi-objective and para-

metric optimization, computational geometry, and graphics. We analyze the performance of the

chord algorithm, as compared to the optimal approximation that achieves a desired accuracy with

the minimum number of points. We prove sharp upper and lower bounds, both in the worst case and

average case setting.

We now briefly describe the algorithm. Let f1, f2 be the two objectives (say minimization

objectives for concreteness), and let P be the (unknown) convex Pareto curve. First optimize f1,

and f2 separately (i.e. call Comb for the weight tuples (1, 0) and (0, 1)) to compute the leftmost and

rightmost points a, b of the curve P . The segment (a, b) is a first approximation to P ; its quality

is determined by a point q ∈ P that is least well covered by the segment. It is easy to see that this

worst point q is a point of the Pareto curve P that minimizes the linear combination f2 +λf1, where

λ is the absolute value of the slope of (a, b), i.e. it is a point of P with a supporting line parallel

to the ‘chord’ (a, b). Compute such a worst point q; if the error is ≤ ε, then terminate, otherwise

add q to the set S to form an approximate set {a, q, b} and recurse on the two intervals (a, q) and

(q, b). In Section 6.2 we give a more detailed formal description (for example, in some cases we

can determine from previous information that the maximum possible error in an interval is ≤ ε and

do not need to call Comb).

CHAPTER 6. THE CHORD ALGORITHM 124

In this chapter we analyze the performance of the Chord algorithm, both in the worst case and

in the average case setting. We define the performance ratio to be the ratio between the number

of Comb calls performed by the Chord algorithm and the minimum number of points required to

obtain an ε-convex Pareto set for the given instance (see Section 6.2)1. We provide sharp upper

and lower bounds on the performance (competitive) ratio of the Chord algorithm, both in the worst

case and in the average case setting. Consider a bi-objective problem where the objective functions

take values in [2−m, 2m]. We prove that the worst-case performance ratio of the Chord algorithm

for computing an ε-convex Pareto set is Θ(m+log(1/ε)
logm+log log(1/ε)). The upper bound implies in particular

that for problems with polynomially computable objective functions and a polynomial-time (exact

or approximate) Comb routine, the Chord algorithm runs in polynomial time in the input size and

1/ε. We show furthermore that there is no algorithm with constant performance ratio. In particular,

every algorithm (even randomized) has performance ratio at least Ω(logm+ log log(1/ε)).

Similar results hold for the approximation of convex curves with respect to the Hausdorff dis-

tance. That is, the performance ratio of the Chord algorithm for approximating a convex curve of

length L within Hausdorff distance ε, is Θ(log(L/ε)
log log(L/ε)). Furthermore, every algorithm has worst-

case performance ratio at least Ω(log log(L/ε)).

We also analyze the expected performance of the Chord algorithm for some natural probability

distributions. Given that the algorithm is used in practice in various contexts with good performance,

and since worst-case instances are often pathological and extreme, it is interesting to analyze the

average case performance of the algorithm. Indeed, we show that the performance on the average

is exponentially better. Note that Chord is a simple natural greedy algorithm, and is not tuned to

any particular distribution. We consider instances generated by a class of product distributions that

are “approximately” uniform and prove that the expected performance ratio of the Chord algorithm

is Θ(logm + log log(1/ε)) (upper and lower bound). Again similar results hold for the Hausdorff

distance.

Related Work. There is extensive work on multiobjective optimization, as well as on approxima-

tion of curves in various contexts. We have discussed already the main related references. The

problem addressed by the Chord algorithm fits within the general framework of determining the

shape by probing [CY]. Most of the work in this area concerns the exact reconstruction, and the

1We note that this notion of performance is different than the ones used in the previous chapters.

CHAPTER 6. THE CHORD ALGORITHM 125

analytical works on approximation (e.g., [LB, Ro, YG]) compute only the worst-case cost of the

algorithm in terms of ε (showing bounds of the form O(
√
L/ε)). There does not seem to be any

prior work comparing the cost of the algorithm to the optimal cost for the instance at hand, i.e.,

the approximation ratio, which is the usual way of measuring the performance of approximation

algorithms.

Organization. The rest of the chapter is organized as follows. Section 6.2 describes the model and

states our main results, Section 6.3 concerns the worst-case analysis, and Section 6.4 the average-

case analysis.

6.2 Model and Statement of Results

6.2.1 Preliminaries.

Let Π be a bi-objective optimization problem in the aforementioned framework. We access the

objective space I of Π via an oracle Comb that (exactly or approximately) minimizes non-negative

linear combinations y + λx of the objectives. We assume that either δ = 0 (i.e. we have an exact

routine), or we have a PTAS, i.e. can efficiently compute Combδ for all δ > 0. Recall that the

existence of a PTAS for Combδ is necessary and sufficient for the efficient computability of an

ε-CP set.

Note that, obviously every algorithm that constructs an ε-CP, must certainly make at the very

least OPTε(I) calls to Comb, just to get OPTε(I) points – which are needed at a minimum to

form an ε-CP ; this holds even if the algorithm somehow manages to always be lucky and call

Comb with the right values of λ that identify the points of an optimal ε-CP. (Having obtained the

points of an optimal ε-CP, another OPTε(I) many calls to Comb with the slopes of the edges of

the polygonal line defined by the points, suffice to verify that the points form an ε-CP. Hence, the

“offline” optimum number of calls is at most 2 · OPTε(I).) Let CHORDε(I) be the number of

Comb calls required by the chord algorithm. The worst-case performance ratio of the algorithm is

supI CHORDε(I)/OPTε(I). If the inputs are drawn from some probability distribution D, then

we will use the expected performance ratio EI∈D[CHORDε(I)/OPTε(I)] as a measure (note that

we shall omit the subscript “I ∈ D” when the underlying distributionD over instances will be clear

from the context).

CHAPTER 6. THE CHORD ALGORITHM 126

We denote by pq the line segment with endpoints p and q, (pq) denotes its length and 4(pqr)

is the triangle defined by p, q, r. Also S(A) denotes the area of A. We now define the horizon-

tal distance. (We use this distance as an intermediate tool for our lower bound construction in

Section 6.3.1.) The horizontal distance from p to q is defined ∆x(p, q) = max{x(q) − x(p), 0}.

The horizontal distance from p to the line segment ` is ∆x(p, `) = ∆x(p, p`), where p` is the

y-projection of p on `. Also [n] := {1, 2, . . . , n} and [i, j] := {i, i+ 1, . . . , j}.

Remark 6.2.1. All the upper bounds of this chapter on the performance of the Chord algorithm hold

under the assumption that we have a PTAS for the Comb routine. On the other hand, our lower

bounds apply even for the special case that an exact routine is available. For the simplicity of the

exposition, we first describe the Chord algorithm and prove our upper bounds for the case of an

exact Comb routine. We then describe the differences for the case of an approximate routine.

6.2.2 The Chord Algorithm.

We have set the stage to formally describe the algorithm. Let Π be a bi-objective problem with an

efficient exact Comb routine. Given ε > 0 and an instance I of Π (implicitly given via Comb),

we would like to construct an ε-convex Pareto set for I using as few calls to Comb as possible. As

mentioned in the introduction, a popular algorithm for this purpose is the chord algorithm that is the

main object of study in this chapter.

In Table 6.1 we describe the algorithm in detailed pseudo-code. The pseudo-code corresponds

exactly to the description of the algorithm in the introduction.

The basic routine Chord is called recursively from the main algorithm. This recursive descrip-

tion will be useful in the analysis that follows.

An illustration of one iteration of the algorithm (i.e. recursive call of the Chord routine) is

given in Figure 6.1 below. The points ai, bi are solution points (in I) and are the results of previous

recursive calls. The point qi = Comb(λaibi) is the solution point computed in the current call. The

algorithm will recurse on the triangles 4(aia
′
iqi) and 4(qibib

′
i). Note that the line a′ib

′
i is parallel

to aibi and ∠aicibi ∈ [π/2, π).

During the execution of the algorithm, we “learn” the objective space in an “online” fashion.

After a number of iterations, we have obtained information that imposes an upper and a lower ap-

proximation to CP(I). In particular, the computed points define a polygonal chain that is an “upper”

CHAPTER 6. THE CHORD ALGORITHM 127

Chord Algorithm (Input: I, ε)

a = Comb(+∞); b = Comb(0);

c = (x(a), y(b));

Return Chord ({a, b, c}, ε).

Routine Chord (Input: {l, r, s}, ε)

IfRD(s, lr) ≤ ε return {l, r};

λlr = absolute slope of lr; q = Comb(λlr);

IfRD(q, lr) ≤ ε return {l, r};

`(q) := line parallel to lr through q;

sl = ls ∩ `(q); sr = rs ∩ `(q);

Ql = Chord({l, q, sl}, ε);

Qr = Chord({q, r, sr}, ε);

Return Ql ∪Qr.

Table 6.1: Pseudo-code for Chord algorithm.

approximation to CP(I) and the supporting lines at these points define a “lower” approximation.

The pseudo-code above is specialized for the ratio distance, but one may use other metrics based

on the application. In the context of convex curve simplification, our upper and lower bounds for

the chord algorithm also apply for the Hausdorff distance (i.e. the maximum euclidean distance of

a point in the actual curve from the approximate curve).

Consider the recursion tree built by the Chord algorithm. In the analysis we use the following

convention: There is no node in the tree if, at the corresponding step, the routine terminates without

calling the Comb routine (i.e. ifRD(s, lr) ≤ ε in the above).

The following lemma is straightforward:

Lemma 6.2.2. The set of points Q computed by the algorithm is an ε-convex Pareto set.

CHAPTER 6. THE CHORD ALGORITHM 128

i
a

i
c

ib

iq
'ia

'
i

b

Figure 6.1: Illustration of the Chord algorithm.

6.2.3 Our Results.

We are now ready to state our main results.

Our first main result is an analysis of the chord algorithm on worst-case instances that is tight

up to constant factors. In particular, for the ratio distance we prove

Theorem 6.2.3. The worst-case performance ratio of the chord algorithm (wrt the ratio distance) is

Θ
(m+log(1/ε)

logm+log log(1/ε)

)
. Furthermore, no algorithm can have performance ratio better than Ω(logm+

log log(1/ε)).

The lower bound is proved in Section 6.3.1 (Theorem 6.3.1). In Section 6.3.2 we show our

upper bound. We start by presenting a slightly weaker upper bound of O(m + log(1/ε)); this has

the advantage that its proof is simple and intuitive. The proof of the asymptotically tight upper

bound requires a more careful analysis and is presented next. The lower bound against general

algorithms is given in Section 6.3.1.3 (Theorem 6.3.6).

Remark 6.2.4. It turns out that the Hausdorff distance behaves very similarly to the ratio distance.

CHAPTER 6. THE CHORD ALGORITHM 129

In particular, by essentially identical proofs, it follows that the performance ratio of the Chord algo-

rithm for approximating a convex curve of length L within Hausdorff distance ε, is Θ(log(L/ε)
log log(L/ε)).

Furthermore, every algorithm has worst-case performance ratio at least Ω(log log(L/ε)).

We also analyze the Chord algorithm with respect to the horizontal distance metric (or by sym-

metry the vertical distance). We prove that in this setting the performance ratio of the algorithm

is unbounded. In fact, we can prove a strong lower bound in this case: Any algorithm has an un-

bounded performance ratio (see Theorem 6.3.7).

Our second main result is a tight analysis of the Chord algorithm in an average case setting (wrt

the ratio distance). Our random instances are drawn from two classes of standard distributions that

have been widely used for the average case analysis of geometric algorithms in a variety of settings.

In particular, we consider (i) a Poisson Point Process on the plane and (ii) n points drawn from

“un-concentrated” product distribution. We now formally define these distributions.

Definition 6.2.5. A (spatial, homogeneous) Poisson Point Process (PPP) of intensity λ on a bounded

subset S ⊆ Rd is a collection of random variables {N(A) | A ⊆ S is Lebesgue measurable}

(representing the number of points occurring in every subset of S), such that: (i) for any Lebesgue

measurable A, N(A) is a Poisson random variable with parameter λ · S(A); (ii) for any collection

of disjoint subsets A1, . . . , Ak the random variables {N(Ai), i ∈ [k]} are mutually independent.

Definition 6.2.6. Let S be some bounded Lebesgue-measurable subset of R2, and let D be a distri-

bution over S. The distribution D is called γ-balanced, γ ∈ [0, 1), if for all Lebesgue measurable

subsets S′ ⊆ S, D(S′) ∈
[
(1− γ) · U(S′), U(S′)

(1−γ)

]
, where U is the uniform distribution over S.

We assume that γ is an absolute constant and we omit the dependence on γ in the performance

ratio below. We prove:

Theorem 6.2.7. For the aforementioned classes of random instances, the expected performance

ratio of the Chord algorithm is Θ
(

logm+ log log(1/ε)
)
.

The upper bound can be found in Section 6.4.1 and the lower bound in Section 6.4.2. We first

present detailed proofs for the case of PPP and then present the (more involved) case of Product

distributions.

We note that similar results apply also for the Hausdorff distance.

CHAPTER 6. THE CHORD ALGORITHM 130

6.3 Worst–Case Analysis

6.3.1 Lower Bounds.

In this section we prove the aforementioned lower bounds. In Section 6.3.1.1 we prove a tight lower

bound for the chord algorithm. In Section 6.3.1.3 we give the proof of our general lower bound.

6.3.1.1 Lower Bound for Chord Algorithm.

In fact, we prove a stronger result that also rules out the possibility of constant factor bi-criteria ap-

proximations, i.e. the lower bound applies even if the algorithm is allowed error O(ε) and compare

against the optimal ε-approximation.

Theorem 6.3.1. Let µ ≥ 1 be an absolute constant. Let ε > 0 be smaller than a sufficiently small

constant and m > 0 be large enough. There exists an instance ILB = ILB(ε,m, µ) such that

OPTε(ILB) = O(1) and CHORDµ·ε(ILB) = Ω
(

(1/µ) · m+log(1/ε)
logm+log log(1/ε)

)
.

Proof. The lower bound applies even if an exact Comb routine is available, hence we restrict our-

selves to this case for the proof. Before we proceed with the formal proof, we give an explanation

of our construction for the case µ = 1 and m = 1. The (rough) intuition is that the algorithm

can perform poorly when the input instance is “skewed”, i.e. we have a triangle 4(abc) where

(ac) >> (bc). For such instances one can force the algorithm to select many “redundant” points

(hence, perform many calls to Comb) to guarantee an ε-approximation, even when few points (calls)

suffice.

For the special case under consideration, the hard instance has endpoints a = (1, 2) and b = (1+

2ε, 1), where ε is sufficiently small. Initially, the only available information is that the instance lies

in the right triangle 4(acb), where c = (1, 1). Observe that, for an instance with these endpoints,

the original error (i.e. RD(c, ab)) is roughly 2ε and one intermediate point q∗ always suffices to

ε-cover, i.e. the optimal size is (at most) 3. We want to define a sequence of points {q1, . . . , qj} –

all of which will be vertices of the convex pareto set for the corresponding instance – that force the

algorithm to select all the qi’s (in order of increasing i), until it finds q∗ = qj . That is, we want the

algorithm to monotonically converge to the optimal point by visiting all the vertices of the instance

in order.

CHAPTER 6. THE CHORD ALGORITHM 131

Let λab = 1/(2ε) be the slope of ab. In the first step, the algorithm calls Comb(λab) to find

a solution point at maximum ratio distance from ab. We want this call to return q1. The idea is

to subdivide the (length of the) edge ac geometrically with ratio k – for an appropriately selected

k – and place q1 on ac so that (q1c) = (ac)/k. Let `(q1) be the line parallel to ab through q1.

By definition, this line supports the objective space. Denote q∗1 = `(q1) ∩ bc. Then the error of

the approximation {a, q1, b} equals RD(q∗1, q1b) (the error to the left of q1 is 0). If k ≤ 2, we are

already done, since x(q∗1) ≥ 1 + ε, which impliesRD(q∗1, q1b) ≤ ε. On the other hand, if k ≥ 1/ε,

we are also done since y(q1) ≤ 1 + ε, hence RD(q∗1, q1b) ≤ ε. If ω(1) ≤ k ≤ o(1/ε), it can be

argued thatRD(q∗1, q1b) ≈ (q∗1b) = 2ε · (1− 1/k). (Observe that the RHS is actually the horizontal

distance of q∗1 from q1b.) Hence, for this regime the error decreased by only an additive 2ε/k << ε

and the algorithm needs to recurse on the triangle 4(q1q
∗
1b). Note that λq1b = λab/k = (2ε)−1/k.

The algorithm now calls Comb(λq1b) and this call will return q2. To select this point we repeat our

“geometric subdivision trick”. Recall that there are no points below the line q1q
∗
1 . Let q′2 be the

projection of q2 on ac. We select q2 on the segment q1q
∗
1 so that (q′2c) = (q1c)/k. Let `(q2) be the

(supporting) line parallel to q1b through q2. Similarly, the error of the approximation {a, q1, q2, b}

equals RD(q∗2, q2b) where q∗2 = `(q2) ∩ bc. Now, if (q′2c) = (ac)/k2 >> ε, we can approximate

RD(q∗2, q2b) ≈ (q∗2b) ≈ 2ε · (1 − 2/k), i.e. the error has decreased by another additive 2ε/k. We

can repeat this process iteratively, where (roughly) in step i we select qi on the line qi−1q
∗
i−1, so

that the length of the projection satisfies (q′ic) = (q′i−1c)/k. The iterative process can continue, as

long as (q′ic) >> ε. Also note that the number j of iterations cannot be more than ≈ k/2 because

x(qi) ≈ 1 + i · (2ε/k) and x(q∗) ≤ 1 + ε. Since, (q′ic) = 1/ki it turns out that the optimal choice

of parameters is 2j ≈ k ≈ log(1/ε)
log log 1/ε .

We stress that the actual construction is more elaborate than the one presented in the intuitive

explanation above. Also, to show a bi-criterion lower bound, we need to add one more point qj+1 so

that the chord algorithm selects {q1, . . . , qj} until it covers by µ · ε, while the last point qj+1 (along

with the endpoints) suffice to ε-cover.

The formal proof comes in two steps. We first analyze the chord algorithm wrt to the horizontal

distance metric. We show that the performance ratio of the chord algorithm is unbounded in this

setting (this also holds for the vertical distance by symmetry). In particular, for every k ∈ N, there

exists an instance IG (actually in the unit square) so that the chord algorithm has ratio k for additive

CHAPTER 6. THE CHORD ALGORITHM 132

error 1/2. We then show that, for an appropriate setting of the parameters in IG, we obtain the

instance ILB that yields the desired lower bound for the ratio distance.

Step 1: The instance IG(H,L, k, j) lies in the triangle4(abc), where a = (1, 1+H), b = (1+L, 1)

and c = (1, 1). The points a and b are (the extreme) vertices of the convex Pareto set. We introduce

two additional parameters. The first one, k ∈ N, is the ratio used in the construction to geometrically

subdivide the length of the line ac in every iteration. The second one, j ∈ N with j ∈ [1, k − 1], is

the number of iterations and equals the number of vertices in the instance.

We define a set of points Q = {qi}j+2
i=0 ordered in increasing x–coordinate and decreasing y–

coordinate. Our instance will be the convex polygonal line with vertices the points in Q. We set

q0 = a and qj+2 = b. The set of points {q1, . . . , qj+1} is defined recursively as follows:

1. The point q1 has x(q1) = x(a) and y(q1) = y(c) +
(
y(a)− y(c)

)
/k.

2. For i ∈ [2, j + 1] the point qi is defined as follows: Let `(qi−1) denote the line parallel to

qi−2b through qi−1. The point qi is the point of this line having y(qi) = y(c) +
(
y(qi−1) −

y(c)
)
/(k + i− 1).

We want to compute an εL-approximation – recall that the error is measured wrt the horizontal

distance – with εL(L, k, j)
def
= L · k−1

k+j−1 . Also denote ε′L(L, k, j)
def
= L · k−1

k ·
j

k+j−1 . Note that

ε′L/εL = j/k.

See Figures 6.2 and 6.3 for a graphic illustration of the worst-case instances for the chord

algorithm. We would like to stress that the figures are not drawn to scale. In particular, in the

figures below we have H = L, while the actual lower bound for the ratio distance applies for

H >> L; in particular, for H = 2m and L = O(ε).

We show the following:

Lemma 6.3.2. The chord algorithm applied to the instance IG (wrt horizontal distance) selects the

sequence of points 〈q1, q2, . . . , qj〉 to get error εL, while the set {a, qj+1, b} attains error ε′L.

Proof of Lemma 6.3.2. We first provide a brief overview of the proof. For i ∈ [j − 1], let q∗i be the

intersection of the line `(qi) – the line parallel to qi−1b through qi–with bc. The error of {a, qj+1, b}

is exactly ∆x(q1, aqj+1). Observe that ∆x(q1, aqj+1) < ∆x(q1, aq
∗
j). By a triangle similarity

argument we obtain ∆x(q1, aq
∗
j) = ε′L, which yields the second statement. For the first statement,

CHAPTER 6. THE CHORD ALGORITHM 133

1k

k

−

1

k 1

k

k +

1

1k +

1

2

k

k

+

+

1

2k +

()0
1,1q a H≡ = +

()1,1c = ()1
1 ,1kq b L

+
≡ = +

1
q

2
q

3
q

4
q

Figure 6.2: Lower bound for Chord. The figure depicts the case j = k = 4.

we show inductively that the recursion tree built by the algorithm for IG is a path of length j − 1

and at depth i − 1, for i ∈ [j], the chord subroutine selects point qi. The proof amounts to noting

that the error of the approximation {q1, . . . , qi} is ∆x(q∗i , qib), which is > εL for i < j and = εL

for i = j.

We now provide the details. We need some notation: For i ∈ [j], we denote ∆xi
def
= ∆x(qi, qi−1b).

Let pi be the y-projection of qi on qi−1b, so that ∆xi = (qipi). Also, for i ∈ [j − 1], let q∗i be the

intersection of the line `(qi) – the line parallel to qi−1b through qi–with bc. If p∗i is the y-projection

of q1 on aq∗i , we have ∆x(q1, aq
∗
i) = (q1p

∗
i). (See Figure 6.3 for an illustration of these definitions.)

We start with the following claim:

Claim 6.3.3. For all i ∈ [j], we have ∆xi = L · (k − 1)/(k + i− 1).

Proof of Claim 6.3.3. By induction on i. For the induction basis (i = 1), we observe that the

CHAPTER 6. THE CHORD ALGORITHM 134

1k

k

−

1

k 1

k

k +

1

1k +

1

2

k

k

+

+

1

2k +

()0
1,1q a H≡ = +

()1,1c =
1

(1 ,1)
k

q b L
+

≡ = +

1
q

2
q

3
q 4

q

1
x∆

2
x∆

3
x∆

1
q

∗

2
q∗

3
q

∗

1
p

2
p

3
p

1
p

∗

2
p

∗

3
p

∗

Figure 6.3: Illustration of definitions for counterexample in Figure 6.2.

triangles4(aq1p1) and4(acb) are similar, hence

∆x1

(bc)
=

(aq1)

(ac)

which yields ∆x1 = (bc) · (1− 1/k) = L · (k − 1)/k as desired.

Suppose that the claim is true for i ∈ [j − 1]. We will prove it for i + 1. We similarly exploit

the similarity of the triangles4(qiq
∗
i b) and4(qiqi+1pi+1), from which we get

∆xi+1

(q∗i b)
=

(qiqi+1)

(qiq∗i)
=
y(qi)− y(qi+1)

y(qi)
(6.1)

where the second equality follows from the collinearity of qi, qi+1, q
∗
i . Observe that the third term

in the relation (6.1) above is equal to (k+ i−1)/(k+ i) by construction. Now note that, because of

the parallelogram (qipibq
∗
i), we have (q∗i b) = ∆xi. Hence, (6.1) and the induction hypothesis now

imply

∆xi+1 = ∆xi ·
k + i− 1

k + i
= L · k − 1

k + i− 1
· k + i− 1

k + i
= L · k − 1

k + i

which completes the proof. �

CHAPTER 6. THE CHORD ALGORITHM 135

Since (q∗i b) = ∆xi (as noted in the proof of the above claim), it follows that for all i ∈ [j − 1]

we have

x(q∗i) = 1 + i/(k + i− 1). (6.2)

We will start by showing that the set {a, qj+1, b} is an ε′L-convex Pareto (wrt to horizontal distance).

(This implies that 3 calls to Comb suffice for the optimal algorithm, i.e. OPTε′L
= 3.) First, note

that the error to the right of qj+1, i.e. the distance of the lower envelope from qj+1b is actually

zero (qj+1b is the rightmost edge of the lower envelope). It suffices to bound from above the error

to its left. Since aqj+1 has absolute slope larger than ab, the unique point (of the lower envelope)

at maximum distance from aqj+1 is q1. We have that ∆x(q1, aqj+1) < ∆x(q1, aq
∗
j). From the

similarity of the triangles 4(caq∗j) and 4(q1ap
∗
j) we get ∆x(q1, aq

∗
j) = (1 − 1/k) · (cq∗j) =

(1− 1/k) · (x(q∗j)− x(c)) = L · (1− 1/k) · j
k+j−1 = ε′L. Hence, ∆x(q1, aqj+1) < ε′L as desired.

We now proceed to analyze the behavior of the chord algorithm. We will show that the algorithm

selects the points q1, q2, . . . , qj (in this order) till it terminates. To this end, we prove: Consider the

recursion tree built by the algorithm for the instance IG. The tree is a path of length j − 1. In

particular, for all i ∈ [j], at depth i− 1, the chord subroutine selects point qi.

We prove the aforementioned statement by induction on the depth d of the tree. (Note that

the chord algorithm initially finds the extreme points a and b.) For d = 0 (first recursive call),

the algorithm selects a point of the lower envelope with maximum horizontal distance from ab.

By construction, all the points (of the lower envelope) in the line segment q1q2 have the same

(maximum) distance from ab (since q1q2 is parallel to ab). Hence, any of those points may be

potentially selected. Since the Comb routine is a black-box oracle, we may indeed assume that and

indeed q1 is selected†. The maximum error after q1 is selected equals ∆x(q∗1, q1b) = x(b)−x(q∗1) =

L · (1− 1/k) > εL. Hence, the algorithm will not terminate after it has selected q1.

For the inductive step, we assume that the recursion tree is a path up to depth d ∈ [j−2] and the

algorithm selected the points {q1, q2, . . . , qd+1} up to this depth. We analyze the algorithm at depth

d + 1. At depth d + 1 the algorithm knows that the error to the left of qd+1 is 0 and the error to its

right is ∆x(q∗d+1, qd+1b) = L · (k− 1)/(k+ d) > εL (since d ≤ j − 2). Hence, the algorithm does

†This simplifying assumption is not necessary. We can slightly perturb the instance so that the absolute slope of q1q2

is “slightly” smaller than λab, so that the effect on the actual distances is negligible. By doing that, the point q1 will be

the “unique minimizer” for Comb(λab).

CHAPTER 6. THE CHORD ALGORITHM 136

not terminate, but it calls Comb to find a point between qd+1 and b at maximum distance from qd+1b.

By construction, the points of maximum distance are those belonging to the line qd+2qd+3 (which is

parallel to qd+1b); hence, we can assume qd+2 is selected. At this point the algorithm knows that the

error to the left of qd+2 is 0. The error to its right is is ∆x(q∗d+2, qd+2b) = L·(k−1)/(k+d+1) > εL,

unless d = j − 2. This completes the proof of the lemma. �

Step 2: We now define the instance ILB . Fix H∗ := 2m − 1, L∗ := (µ + 1) · ε, j∗ := Θ
(
(1/µ) ·

log(H∗/ε)
log log(H∗/ε)

)
and k∗ := µ · j∗ + 1. We set ILB(ε,m, µ) := IG(H∗, L∗, k∗, j∗). Also, let εL∗ :=

εL(L∗, k∗, j∗) and ε′∗L := ε′L(L∗, k∗, j∗). Observe that, under this choice of parameters, we have

εL
∗ ≥ µ · ε and ε′L

∗ < ε. We show:

Lemma 6.3.4. The chord algorithm applied to ILB selects (a superset of) the points {q1, . . . , qj∗/8}

to attain ratio distance εL∗, while the set {a, qj∗+1, b} is an ε′L
∗-convex Pareto set.

Proof. The proof amounts to proving that for the particular instance, the horizontal distance is a

very good approximation to the ratio distance. Hence, the behavior of the algorithm in these metrics

is similar. The reason we lose a constant factor in the number of points (i.e. j∗/8 as opposed to j∗)

is due to the error term in the approximation between the metrics. We now proceed with the details.

Consider the set Q = {qi}j
∗+2
i=0 defining the instance ILB . The proof makes essential use of the

following lemma that quantifies the closeness of the two metrics in the current setting. Its proof is

deferred to the end of this section.

Lemma 6.3.5. Let s1 be a point in4(abc) and denote by λ the absolute slope of s1b. Let c′ be the

x-projection of s1 on bc. For any point s2 in4(s1c
′b), we have

RD(s2, s1b) ≤ ∆x(s2, s1b) ≤ RD(s2, s1b) +O((L∗)2 + L∗/λ).

By Lemma 6.3.2, the set {a, qj∗+1, b} attains horizontal error at most ε′L
∗. By the first inequality

of Lemma 6.3.5, it follows that the multiplicative error of {a, qj∗+1, b} is at most as big, hence we

directly obtain the second statement.

By Lemma 6.3.2, we also know that the chord algorithm under the horizontal distance selects all

the points {q1, . . . , qj∗} to find an ε∗L-convex cover. As explained in its proof, after the algorithm has

selected the subset {q1, . . . , qi}, for i ∈ [j∗], the horizontal approximation error is ∆x(q∗i , qib) =

L∗ · (k∗ − 1)/(k∗ + i− 1).

CHAPTER 6. THE CHORD ALGORITHM 137

We remark that the error term in the Lemma 6.3.5 leads to the “constant factor loss”, i.e. the

fact that the chord algorithm under the ratio distance picks j∗/8 (as opposed to j∗) points. Note

that, since the ratio distance is a lower bound, the chord algorithm will select at most j∗ points.

Suppose we invoked the chord algorithm with error 0, i.e. we wanted to find the lower envelope

exactly. Then the algorithm would select the points qi in order of increasing i. It is also clear that

the error of the approximation decreases monotonically with the number of steps. It thus suffices

to show that after the algorithm has selected {q1, . . . , qj∗/8}, the multiplicative error will be bigger

than ε∗L. To do this, we appropriately apply Lemma 6.3.5.

Indeed, the multiplicative approximation error of the set {q1, . . . , qj∗/8} is RD(q∗j∗/8, qj∗/8b).

Applying (the right inequality of) Lemma 6.3.5 for s1 = qj∗/8, s2 = q∗j∗/8 we get

RD(q∗j∗/8, qj∗/8b) ≥ ∆x(q∗j∗/8, qj∗/8b)−O
(
(L∗)2 + L∗/λqj∗/8b

)
.

For the first term of the RHS we have

∆x(q∗j∗/8, qj∗/8b) > ε∗L + L∗/4

We now bound from above the error term. The first summand of the error is (L∗)2 = µ2 · ε2 that

is negligible compared to L∗/4, as long as ε << 1/µ. For the second summand we need a lower

bound on the slope λqj∗/8b.

Recall Equation (6.2) in Lemma 6.3.3: x(q∗i) = 1 + L∗ · i/(k∗ + i− 1). It is not hard to verify

that |x(qi) − x(q∗i−1)| = O(L∗/(k∗)i). Also recall that y(qi) = 1 + H∗/
∏i
j=1(k∗ + j − 1) >

1 + H∗/(2k∗)−i. Hence, it follows that λqib > (H∗/L∗)/(2k∗)−i = (2m/ε)/(2k∗)−i. It is thus

easy to see that for the chosen value of j∗ the corresponding slope λqj∗/8b will be much larger than

µ, hence the second term of the error will be also outweighed by L∗/4.

By combining the aforementioned, we get that the actual ratio distance RD(q∗j∗/8−1, qj∗/8−1b)

will be strictly bigger than ε∗L and Lemma 6.3.4 follows. �

This completes the proof of Theorem 6.3.1. �

6.3.1.2 Proof of Lemma 6.3.5.

For convenience we restate the lemma:

CHAPTER 6. THE CHORD ALGORITHM 138

Lemma 6.3.5. Let s1 be a point in4(abc) and denote by λ the absolute slope of s1b. Let c′ be the

x-projection of s1 on bc. For any point s2 in4(s1c
′b), we have

RD(s2, s1b) ≤ ∆x(s2, s1b) ≤ RD(s2, s1b) +O((L∗)2 + L∗/λ).

Proof. Let c′ = (1 + δ, 1) be the x-projection of s1 on the segment cb. If λ is the absolute slope of

s1b, we have that y(s1) = 1+λ·(L∗−δ). Now fix a point s2 = (1+δx, 1+δy) in4(s1c
′b). We want

to show that the horizontal distance of s2 from s1b is a good approximation to the corresponding

ratio distance when λ is large. (See Figure 6.4 for an illustration.)

()1,1c =

()1 ,1b L= +

1
s

2
s

2
's

δ

xδ

y
δ

()1
1s bλ λ= >>

p q

()' 1 ,1c δ= +

Figure 6.4: Illustration of the relation between the horizontal and the ratio distance.

We first calculate the horizontal distance ∆x(s2, s1b). Observe that

∆x(s2, s1b) = (s2q) = (pq)− (ps2).

CHAPTER 6. THE CHORD ALGORITHM 139

It is clear that (ps2) = x(s2) − x(p) = δx − δ. From the similarity of the triangles 4(s1pq) and

4(s1c
′b) we get

(pq)

(c′b)
=

(s1p)

(s1c′)
.

Since (c′b) = L∗ − δ, (s1c
′) = λ · (L∗ − δ) and (s1p) = (s1c

′)− (pc′) = (s1c
′)− δy we get

(pq) = (L∗ − δ) ·
(

1− δy
λ · (L∗ − δ)

)
.

Therefore,

∆x(s2, s1b) = (L∗ − δ) ·
(

1− δy
λ · (L∗ − δ)

)
− (δx − δ) = L∗ − δx −

δy
λ
.

The ratio distance r
def
= RD(s2, s1b) by definition is such that s′2 = (1 + r) · s2 ∈ s1b. We thus

get

(1 + r) · y(s2) + λ(1 + r) · x(s2) = y(b) + λx(b)

or equivalently

r =
λ
(
x(b)− x(s2)

)
−
(
y(s2)− y(b)

)
y(s2) + λx(s2)

.

Substitution yields that

r =
λ(L∗ − δx)− δy

1 + δy + λ(1 + δx)
=

L∗ − δx − δy
λ

1 + δx + 1
λ +

δy
λ

.

Observe that the numerator of the above fraction equals ∆x(s2, s1b) and the denominator is at

least 1. Hence,RD(s2, s1b) ≤ ∆x(s2, s1b). For the other inequality we have:

∆x(s2, s1b)−RD(s2, s1b) =
(
L∗ − δx −

δy
λ

)
·
(

1− 1

1 + δx +
1+δy
λ

)
=

(
L∗ − δx −

δy
λ

)
·
(δx + 1

λ +
δy
λ

1 + δx + 1
λ +

δy
λ

)
(6.3)

≤ L∗ · (2L∗ + 1/λ) (6.4)

= O((L∗)2 + L∗/λ)

as desired. To obtain the inequality (6.4), we bound the product (6.3) term by term. The first term is

clearly at most L. For the second term, the denominator is at least 1. For the numerator, we use the

fact that δx ≤ L∗ and δy
λ ≤ L

∗−δx ≤ L∗ (which holds because s2 was assumed to lie in4(s1c
′b)).

This completes the proof. �

CHAPTER 6. THE CHORD ALGORITHM 140

6.3.1.3 General Lower Bounds.

We can prove a (weaker) lower bound against any algorithm that rules out the possibility of a

constant factor approximation for minimizing the number of Comb Calls. In particular, we have

Theorem 6.3.6. For any algorithm (even randomized), there exists an instance such that the per-

formance ratio of the algorithm is Ω(logm+ log log(1/ε)).

Proof. The proof uses the construction of the previous subsection as a black box. It works by

essentially reducing the computation of an ε-CP (given access to Comb) to a comparison-based

binary search on a set of cardinality j∗.

Recall that we consider algorithms that have access to Comb and measure the number of calls

made by the algorithm as compared to the minimum possible for the given instance. The proof

uses the lower bound ILB from the previous theorem essentially as a black box. For simplicity, let

µ = 1 andQ = {q1, . . . , qj∗} be the corresponding set of points. Suppose the error we care about is

ε > RD(q∗j∗ , qj∗b). Define the family of “prefixes” Q = {Qi}j
∗

i=1 of Q, where Qi = {q1, . . . , qi},

i ∈ [j∗]. It follows from the properties of the setQ that the convex polygonal instance corresponding

to each Qi has the following property: its last point (i.e. qi) suffices to ε-cover (together with the

endpoints), while the set Qi \ qi does not.

Consider a general algorithm A. In order to find an ε-convex Pareto, it must be able to “dis-

tinguish” among Qi’s. Since otherwise, it cannot detect the rightmost point of the given instance,

hence cannot guarantee an ε-approximation. This essentially means that the algorithm must perform

a binary search on the slopes {λqib}
j∗

i=1. Having reduced the problem to a comparison-based binary

search on a set of cardinality j∗ a lower bound of Ω(log j∗) follows (for randomized algorithms as

well). �

�

Our next theorem says that, if our metric is the horizontal/vertical distance, then every algorithm

with access to a Comb routine has an unbounded performance ratio. This holds even for instances

that lie in the unit square and for additive error 1/2. The proof of the following theorem builds on

the lower bound construction for the chord algorithm (Section 6.3.1.1, Step 1).

CHAPTER 6. THE CHORD ALGORITHM 141

Theorem 6.3.7. For any k ∈ N and any algorithm A, there exists an instance for which the perfor-

mance ratio of A wrt horizontal/vertical distance is Ω(k). This is true even for instances that lie in

the unit square and for error (horizontal/vertical distance) 1/2.

Proof. We start from an instance in the unit square with endpoints a = (0, 1) and b = (1, 0). The

algorithm A has the following properties: It “knows” the value of the desired approximation ε.

We set ε = 1/2. It adaptively selects a sequence of absolute slopes (inputs to calls to the Comb

routine) λ1, λ2, . . . , λk and terminates when it has a “certificate” that the error of the approximation

it has computed is at most ε. In the argument below, the adversary forces the algorithm to select a

decreasing sequence of absolute slopes λ1, λ2, . . . , λk, i.e. λi < λi+1. It is very similar to the chord

counterexample. The main reason that it works is that for the horizontal distance there is no finite

“ε-net” (i.e. obliviously selected finite set of slopes that suffices). This is also why we get infinite

ratio in the lower bound.

The algorithm starts by making its first call λ1 to Comb (knowing the endpoints only). The

adversary “sees” λ1 and “restricts” the instance accordingly. In particular, in our context, it suffices

for the adversary to add one vertex q1 appropriately – so that q1 = Comb(λ1). Then the algorithm

makes its second call λ2, based on the current information it has about the instance: q1 and the lower

bound (supporting line with slope λ1 through q1). The adversary selects q2, based on λ1, λ2. The

algorithm selects λ3 based on the current instance; and so forth.

The whole point that makes the proof simple is that we can use an inductive argument in the

current triangle – similar to the one for the chord rule – while maintaining a basic invariant. The

only invariant we need is this: the point q∗i has x-coordinate less than 1/2. If this is the case, then it

is possible that one point 1/2-covers q1 (hence the entire instance). The adversary argument is this:

If the slope λi selected byA in the (i+ 1)-th step of the computation is greater or equal to the slope

that the chord would have used, select the point qi+1 in the same way as the chord counterexample.

Otherwise, select qi+1 (on the line qiq∗i as before) such that y(qi+1) is “scaled down” appropriately,

so that q∗i+1 has “not too large” x-coordinate. This immediately guarantees that the distance of qi+1

from qib is larger than ε.

The following figure illustrates the i-th step of the lower bound.

From this figure we immediately get that ∆xi+1 ≤ 1/(2k), hence x(q∗i+1) − x(q∗i) ≤ 1/(2k).

So, in every step we move at most a 1/(2k) additive to the right.

CHAPTER 6. THE CHORD ALGORITHM 142

{ }1
min ',

2

i

k

+
λ λ

()' (,0)i iq x q=
(1,0)b =

() ()(),
i i i

q x q y q=

1i
q

+

i
q

∗

' slope()iq b=λ

1i+λ

1iq
∗

+

1ihd
+

1ix
+

∆

Figure 6.5: General lower bound for horizontal distance.

We also need to show that the distance decreases very slowly. For this, we have ∆xi+1 ≥

(q∗i+1b). This it true because the line qi+1q
∗
i+1 has slope either λ′, when λi+1 > λ′, or λi+1 other-

wise. So, in every step the distance deceases by at most 1/(2k).

Thus, in k steps the error of the algorithm remains more than 1/2, while the distance of the

optimal solution (e.g. q∗k) is at most 1/2. This completes the proof. �

6.3.2 Upper Bound.

In this section we prove that the performance ratio of the chord algorithm wrt the ratio distance is

O
(m+log(1/ε)

logm+log log(1/ε)

)
. For the sake of the exposition, we start by showing the slightly weaker upper

bound of O(m+ log(1/ε)). The proof of the tight upper bound is more involved and builds on the

understanding obtained from the simpler argument establishing the weaker upper bound.

6.3.2.1 An O(m+ log(1/ε)) Upper Bound.

Before we proceed with the argument, some comments are in order. Perhaps the most natural ap-

proach to prove an upper bound would be to argue that the error of the approximation constructed

by the chord algorithm decreases substantially (say by a constant factor) in every subdivision. This,

if true, would yield the desired result – since the initial error cannot be more than 2O(m). Unfortu-

nately, such an approach badly fails, as implied by the construction of Theorem 6.3.1. Recall that,

in the simplest setting of that construction, the initial error is 2ε and decreases by an additive 2ε/k

in every iteration, where k ≈ log(1/ε)/ log log(1/ε). Hence, the error decreases by a sub-constant

CHAPTER 6. THE CHORD ALGORITHM 143

factor in every iteration. In fact, we note that such an argument cannot hold for any algorithm (given

access to Comb), as follows from our general lower bound (Theorem 6.3.6)†.

Our approach is somewhat indirect. We prove that the area between the “upper and lower

approximation” decreases by a constant factor in every step of the algorithm. This can be interpreted

as a “potential function type argument.” It is not hard to argue that, when the area has become

“small enough” (roughly at most ε2/22m), the error of the approximation (ratio distance of the

lower approximation from the upper approximation) is at most ε. We then use a simple charging

argument to show that this suffices to yield the desired performance guarantee. Formally, we prove:

Theorem 6.3.8. Let T1 be the triangle at the root of the chord algorithm’s recursion tree and denote

α
def
= min{x(q), y(q) | q ∈ T1}. The chord algorithm finds an ε-convex Pareto set after at most

O
(

log
(
S(T1)/S0

))
·OPTε calls to Comb, where S0

def
= ε2 · α2/2.

The desired result follows from the above, since T1 ⊆ [2−m, 2m]2, which implies S(T1) ≤ 22m and

α ≥ 2−m.

Proof. It follows from Lemma 6.2.2 that, upon termination, the algorithm has found an ε-CP set.

To upper bound the performance ratio we need a few lemmas. Our first lemma quantifies the

area shrinkage property. We remark that this is a statement independent of ε.

Lemma 6.3.9. Let Ti = 4(aibici) be the triangle processed by the chord algorithm at some re-

cursive step. Denote qi = Comb(λaibi). Let Ti,l = 4(aia
′
iqi), Ti,r = 4(bib

′
iqi) be the triangles

corresponding to the two new subproblems. Then, we have

S(Ti,l) + S(Ti,r) ≤ S(Ti)/4.

Proof. Let d′i, e
′
i be the projections of qi on bici and aici respectively; see Figure 6.6 for an illustra-

tion. Let

y = (a′ici)/(aici) = (b′ici)/(bici) ∈ (0, 1).

†In [RF] the authors – in essentially the same model as ours – propose a variant of the Chord algorithm (that appro-

priately subdivides the current triangle into three sub-problems). They claim (Lemma 3 in [RF]) that the error reduces by

a factor of 2 in every such subdivision. However, their proof is incorrect. In fact, our counterexample from Section 6.3.1

implies the same lower bound for their proposed heuristic as for the chord algorithm.

CHAPTER 6. THE CHORD ALGORITHM 144

i
a

i
c

ib

iq
'ia

'
i

b

i
d

'id

Figure 6.6: Area shrinkage property of the Chord algorithm.

Then,

S(4(a′ib
′
ici)) = y2S(Ti).

We have

S(Ti,l) + S(Ti,r) =
(
(aia

′
i) · (qie′i) + (bib

′
i) · (qid′i)

)
/2

= (1− y) ·
(
(aici) · (qie′i) + (bici) · (qid′i)

)
/2

= (1− y) ·
(
S(4(aiciqi)) + S(4(biciqi))

)
= (1− y) ·

(
S(Ti,l) + S(Ti,r) + S(4(a′ib

′
ici))

)
which gives

S(Ti,l) + S(Ti,r) = y · (1− y) · S(Ti) ≤ S(Ti)/4

as desired. �

Our second lemma gives a convenient lower bound on the value of the optimum.

Lemma 6.3.10. Consider the recursion tree T ‡ built by the algorithm and let L′ be the number of

‡We use the following convention: There is no node in the tree if, for a triangle, the routine terminates without calling

the Comb routine.

CHAPTER 6. THE CHORD ALGORITHM 145

lowest non-leaf nodes. Then OPTε ≥ |L′|.

Proof. Each such node in the tree corresponds to a triangle Ti = 4(aibici) with the property that

the ratio distance of the convex pareto set from the segment aibi is strictly greater than ε (o/w the

node would be a leaf). Hence, each such triangle must contain a point of the optimal ε-convex

Pareto set. Since all these triangles are disjoint, the result follows. �

Finally, we need a lemma that relates the ratio distance within a triangle to its area:

Lemma 6.3.11. Consider a triangle Ti = 4(aibici) such that Ti ⊆ T1. If S(Ti) ≤ ε2 · α2/2, then

RD(ci, aibi) ≤ ε.

Proof of Lemma 6.3.11. The above lemma follows essentially by observing that the worst-case for

the area-error trade-off is when ci = (α, α), and the triangle is right and isosceles (i.e. (aici) =

(aibi)). �

At this point we have all the tools we need to complete the proof of the theorem. First, by

Lemma 6.3.9, when a node of the tree is at depth log(S(T1)/S0), it will have area at most S0.

By Lemma 6.3.11, this implies that the depth of the tree T is O(log(S(T1)/S0)). Lemma 6.3.10

implies that CHORDε ≤ O(log(S(T1)/S0)) ·OPTε, which concludes the proof. �

6.3.2.2 Tight Upper Bound.

In this subsection, we prove the asymptotically tight upper bound of O
(m+log(1/ε)

logm+log log(1/ε)

)
on the

worst-case performance ratio of the Chord algorithm. The analysis is more involved in this case and

builds on the intuition obtained from the simple analysis of the previous subsection. The crucial

observation used to improve upon the aforementioned bound is this: In each iteration of the algo-

rithm, there is a trade-off between the following two quantities: (i) the area between the upper and

lower approximations and (ii) the approximation error (ratio distance). In particular, the intuition is

that if, in some iteration, the area reduces moderately (say, only by a constant factor), then the ratio

error must reduce substantially. The argument below formalizes this intuition.

We now proceed with the formal proof. We begin by analyzing the case OPTε = 3 (i.e. the

special case that one intermediate point suffices – and is required – for an ε-approximation) and

CHAPTER 6. THE CHORD ALGORITHM 146

then handle the general case. It turns out that this special case captures most of the difficulty in the

analysis.

Let a (leftmost) and b (rightmost) be the extreme points of the convex Pareto curve as computed

by the algorithm. We consider the case OPTε = 3, i.e. (i) the set {a, b} is not an ε-CP and (ii) there

exists a solution point q∗ such that {a, q∗, b} is an ε-CP.

Fix k ∈ N with k = Ω
(m+log(1/ε)

logm+log log(1/ε)

)
. We will prove that, for an appropriate choice of the

constant in the big-Omega, the Chord algorithm introduces at most k points in either of the intervals

[a, q∗], [q∗, b]. Suppose, for the sake of contradiction, that the Chord algorithm adds more points

than that in the segment aq∗ (the proof for q∗b being symmetric.)

We say that, in some iteration of the Chord algorithm, a triangle is active, if it contains the

optimal point q∗. In each iteration, the Chord algorithm has an active triangle which contains the

optimal point q∗. Outside that triangle, the algorithm has constructed an ε-approximation. We note

that the Chord algorithm may in principle go back and forth between the two sides of q∗; i.e., in

some iterations the line parallel to the chord touches the lower envelope to the left of q∗ and in other

iterations to the right.

Let 4(abc) be the initial triangle. We focus our attention on the (not necessarily consecutive)

iterations of the Chord algorithm that add points to the left of q∗. We index these iterations in

increasing order with i ∈ [1, k+1]. Consider the “active” triangle4(aicibi) generated in each such

iteration, where ai is the new point of the curve added in the iteration. It is clear that (i) ai+1 lies

to the right of ai, (ii) bi+1 lies to the left of (or is identified with) bi and (iii) 4(ai+1ci+1bi+1) ⊆

4(aicibi). Also, let us denote b′ := bk+1, that is b′ is the b-vertex (i.e. the vertex that lies to the

right of q∗) of the active triangle in the last iteration k + 1. Note that b′ could be identified with

the point b (which would happen if the Chord algorithm introduces points only to the left of q∗, i.e.

converges to q∗ monotonically), but in general this will not be the case.

Let ei be the intersection point of the line aici with the line b′q∗. Note that, to the left of q∗ the

convex Pareto curve has no points below the line b′q∗. All the point of the convex Pareto curve that

are left of q∗ and lie in the active triangle4(aicibi) (these are the potentially not ε-covered points)

are actually in the triangle 4(aieiq
∗). Consider the line ` that goes through ai and is parallel

to ai−1b
′ and let di be its intersection with b′q∗. Note that the line aici is parallel to ai−1bi (by

construction of the algorithm, this is the line that added the point ai and formed the active triangle

CHAPTER 6. THE CHORD ALGORITHM 147

4(aicibi)) and bi lies to the right of (or is identified with) b′, so the line aidi is to the left of aici,

hence di lies to the left of ei. Now, let fi be the intersection point of ai−1ai with the line b′q∗.

Clearly, fi lies to the left of di. Furthermore, fi lies to the right of (or is identified with) di−1. The

reason is that, below ai−1 the curve has no points (strictly) to the left of the line ai−1di−1, so ai is

to the right of the line (or on the line).

Consider the sequence of triangles 4(aidib
′). Let Hi be the ratio distance of ai from the line

b′q∗ for i ≥ 0. Let Gi be the ratio distance of b′ from the line aidi for i ≥ 1. Let Pi = Hi/Hi−1

and let Ri = 1− Pi.

By definition, we have Hi = Pi ·Hi−1 for all i, and since H0 ≤ 2O(m) we get

Hk ≤ 2O(m) ·
k∏
i=1

Pi.

Also, (dib
′) = Ri · (fib′) and since di−1 lies left of fi, we have (dib

′) ≤ Ri · (di−1b
′), and therefore

(dkb
′) ≤ (d1b

′) ·
k∏
i=2

Ri.

Similarly, Gi is upper bounded by Ri times the ratio distance from b′ to the line ai−1fi, which

is in turn upper bounded by the ratio distance from b′ to the line ai−1di−1 (i.e. Gi−1). Thus,

Gi ≤ Ri ·G−1 and

Gk ≤ G1 ·
k∏
i=2

Ri.

Since the last iteration of the Chord algorithm adds a new point ak+1, we must have Hk > ε

and Gk > ε (since otherwise, the segment akb′ ε-covers all the Pareto points in the active triangle).

Thus, we get
k∏
i=1

Pi > ε/2O(m)

and

G1 ·
k∏
i=2

Ri > ε.

We now consider two subcases.

Case I: G1 ≤ 2ε.

CHAPTER 6. THE CHORD ALGORITHM 148

In this case, the second inequality above gives
∏k
i=2Ri > 1/2. For a fixed product of the

Pi’s, the product of the Ri’s is maximized if all factors are equal. That is, Pi = 1/t for all i

and Ri = 1− 1/t, which gives k = O(t) and t = O
(m+log(1/ε)

logm+log log(1/ε)

)
.

Case II: G1 > 2ε.

In this case, the point a1 is at ratio distance at most ε from the line aq∗, which implies that

q∗ is at most ratio distance ε from the line a1d1 (because a1d1 is parallel to ab′ and b′ is to

the right of q∗). Since G1 > 2ε, it follows that (d1q
∗) < (q∗b′) and hence (d1b

′) < 2(q∗b′).

Therefore,

(dkb
′) ≤ (d1b

′) ·
k∏
i=2

Ri < 2(q∗b′) ·
k∏
i=2

Ri.

Since (dkb
′) > (q∗b′) (as dk is left of q∗), we conclude that

k∏
i=2

Ri > 1/2.

It follows again as in Case I that k = O
(m+log(1/ε)

logm+log log(1/ε)

)
.

We now proceed to analyze the general case by reducing it to the aforementioned special

case. Suppose that the optimal solution has an arbitrary number of points, i.e. has the form

Q∗ = 〈a, q1, q2, . . . , qt, b〉. Charge the points computed by the Chord algorithm to the edges of

the optimal solution as follows: Suppose that an iteration of the Chord algorithm refines a triangle

4(aicibi) by bringing the parallel to the chord aibi which touches the curve, say, at point ei, form-

ing two new triangles4(aia
′
iei) and4(bib

′
iei). Charge this iteration to the edge qiqi+1 ofQ∗ if and

only if one of the two segments qiei or eibi of the curve has no point of Q∗ and is contained in the

segment qiqi+1 (note that it will be contained in a unique segment of Q∗).

This leaves out the iterations of the algorithm where both segments contain points of Q∗. The

total number of such iterations is at most linear in t, because every such iteration splits a subset of

the optimal set into two nonempty sets (i.e. these are the vertices of the recursion tree with two

children) and there can be at most OPT such splits. At this point we have essentially reduced the

general case to the OPTε = 3 case. By arguments parallel to the ones for this special case it follows

that every edge of the optimal solution is charged at mostO
(m+log(1/ε)

logm+log log(1/ε)

)
points of Chord. This

completes the proof.

CHAPTER 6. THE CHORD ALGORITHM 149

Remark 6.3.12. We briefly sketch the differences for the case of an approximate Comb routine.

First we note that, in this case, the description of the Chord algorithm (Table 6.1) has to be slightly

modified to guarantee that the set of computed points is an ε-CP. In particular, in the Chord routine,

we need to check whether RD(q, lr) ≤ ε′ for some ε′ < ε. As a consequence, to prove the desired

upper bound, in addition to the above lemmas we need a way to relate OPTε′ and OPTε. This is

provided to us by the planar geometric lemma from Chapter 5 (Lemmas 5.3.10, 5.3.12) that roughly

say that as ε decreases, the size of the optimal ε-CP (for the same instance) does not increase too

fast.

CHAPTER 6. THE CHORD ALGORITHM 150

6.4 Average Case Analysis

In this section we prove our average case results.

6.4.1 Upper Bounds.

We start by presenting the analysis of the Poisson point process. The proofs for unconcentrated

product distributions are somewhat more involved and are presented next. The analysis for both

cases has the same overall structure, however each case has its difficulties, as elaborated below.

Overview of the Proofs. We now give a brief overview of the proof. For the sake of simplicity, in

the following intuitive explanation, let n denote: (i) the expected number of points in the instance for

a PPP and (ii) the actual number of points for product distributions. As in the worst-case analysis, we

resort to an indirect measure of the algorithm’s progress, namely the area of the triangles maintained

in the algorithm’s recursive tree. We think that this feature of our analysis is quite interesting and

indicates that this measure is quite robust.

We first show (see Lemma 6.4.3 for the case of PPP) that every subdivision performed by the

algorithm decreases the area between the upper and lower approximations by a significant amount

(roughly an exponential decrease) with high probability. It follows then that at depth log log n of

the recursion tree, each “surviving triangle” contains an expected number of at most log logn points

with high probability. We use this fact, together with a charging argument in the same spirit as in

the worst-case, to argue that the expected competitive ratio is log log n in this case.

To analyze the expected competitive ratio in the complementary event, we break it into a “good”

event, under which the competitive ratio is log n with high probability, and a “bad” event, where the

competitive ratio is potentially unbounded (in the Poisson case) or at most n (for the case of product

distributions). The potential unboundedness of the competitive ratio in the Poisson case creates

complications in bounding the expected competitive ratio of the algorithm over the full space. We

overcome this difficulty by bounding the upper tail of the Poisson distribution (see Lemma 6.4.8).

In the case of product distributions, the worst case bound of n on the competitive ratio is suf-

ficient to conclude the proof, but the technical challenges present themselves in a different form.

Here, the “contents” of a triangle being processed by the algorithm depend on the information

coming from the previous recursive calls making the analysis harder. We overcome this by under-

CHAPTER 6. THE CHORD ALGORITHM 151

standing the nature of the information provided from the conditioning.

On the choice of parameters. A simple but crucial observation concerns the “interesting range”

for the parameters of the distributions. Consider for example the uniform distribution: we select n

independent random points, each uniformly distributed in [2−m, 2m]2. We are given an ε > 0 and

we run the chord algorithm on this random instance. It is not hard to see that, if n is larger than

some poly(2m/ε), then the algorithm makes a constant number of calls in expectation. Hence, we

can assume wlog that n = O(poly(2m/ε)). A similar bound also holds for the intensity λ of the

PPP.

Let us elaborate for the case of the uniform distribution. Suppose we are given a uniform

random instance I – i.e. we have n independent random points, each uniformly distributed in some

region S ⊆ [2−m, 2m]2– and we apply the chord algorithm to find an ε-CP set for I. We claim that,

if n is very large, larger than some N = poly(2m/ε), then the expected number of calls performed

by the chord algorithm is trivially O(1). Hence, the interesting case for the distribution is when

n ≤ N . Formally, we have:

Fact 6.4.1. Let T = 4(abc) be the triangle at the root of the Chord algorithm’s recursion tree

and suppose that there are n points independently and uniformly distributed in T . Also denote by

α
def
= min{x(a), y(b)}, let λ be the absolute slope of ab and β

def
= ε2α2

2S(T) ·min{λ, 1/λ} (S(T) is the

area of T). If n ≥ 3
β · log(1/β), then E[CHORDε(T)] = O(1).

Proof. We can of course assume that y(a) > (1+ε) ·y(b) and x(b) > (1+ε) ·x(a), otherwise there

is nothing to prove. Let p1 = (x(a), (1 + ε) · y(b)) ∈ ac and p2 = ((1 + ε) · x(a), y(b)) ∈ bc. Let

T ∗ ⊆ 4(cp1p2) be the right triangle of maximum area whose hypotenuse is parallel to ab. (This is

the shaded triangle in Figure 6.7.)

Let us lower bound the area of T ∗. First, it is clear that c is a vertex of T ∗. It is also clear that

either p1 or p2 (or both) are vertices. Hence, one of the edges of T ∗ has length at least ε · α. Since

λ is the slope of the hypotenuse, the other edge has length at least min{λ, 1/λ} · (ε · α). Hence,

S(T ∗) ≥ ε2α2

2 ·min{λ, 1/λ}. Therefore, the probability that a given uniform point falls into T ∗ is at

least β, which means that the probability than none of the n points falls into T ∗ is at most (1− β)n.

Now if there is a point in T ∗, the chord algorithm will find it in one step (by calling Comb(λ))

and terminate. Otherwise, the algorithm will terminate after at most 2n calls to Comb. Hence,

CHAPTER 6. THE CHORD ALGORITHM 152

E[CHORDε(T)] ≤ 2 + 1 + 2n · (1−β)n. Note that the last summand is at most 2n · e−β·n = O(1)

by our choice of n. �

() ()(),a x a y a=

() ()(),b x b y b=() ()(),c x a y b=

1 ε+

1 ε+

() () ()()1 , 1p x a y bε= + ⋅

() () ()()2 1 ,p x a y bε= + ⋅

()slope of abλ =

Figure 6.7: On the Choice of Parameters.

Note that by assumption T ⊆ [2−m, 2m]2. Hence, α ≥ 2−m. We also have that ε/22m ≤ λ ≤ 22m/ε

(since otherwise the set {a, b} is an ε-CP) and S(T) ≤ 22m, hence β ≥ ε3/26m+1. Thus, we get

an upper bound on n of poly(2m/ε). We note that essentially the same argument applies for γ-

balanced distributions (and PPP) and also when we have an approximate Combδ routine (in which

case we replace ε by an appropriate ε′ = O(ε) in the argument).

A similar claim also applies for the case of the Hausdorff distance. Hence, our average case

upper bounds also apply for this metric. However, the argument fails for the horizontal (and vertical)

distance.

6.4.1.1 Poisson Point Process.

We prove the following theorem – which combined with the aforementioned discussion yields the

desired upper bound of O(logm+ log log(1/ε)).

CHAPTER 6. THE CHORD ALGORITHM 153

Theorem 6.4.2. Let T1 be the triangle at the root of the Chord algorithm’s recursion tree, and

suppose that points are inserted into T1 according to a Poisson Point Process with intensity λ,

λS(T1) > c > e, where c is an absolute constant. The expected performance ratio of the Chord

algorithm on this instance is O
(

log log
(
λS(T1)

))
.

Proof. Let us denote S1 = S(T1). We can assume that λS1 > 10, since otherwise the expected

total number of points inside T1 is O(1) and the bound trivially holds. We show next that the area

of the triangles maintained by the algorithm decreases rapidly at every recursive step. Namely,

Lemma 6.4.3. Let Ti = 4(aibici) be the triangle processed by the chord algorithm at some recur-

sive step. Denote qi = Comb(λaibi). Let Ti,l = 4(aia
′
iqi) and Ti,r = 4(bib

′
iqi). For all c > 0,

with probability at least 1− 1
(lnλS1)c conditioning on the information available to the algorithm,

S(Ti,l), S(Ti,r) ≤
√
S(Ti) ·

√
c · ln lnλS1

λ
.

Proof of Lemma 6.4.3. It follows from the properties of the chord algorithm that, before the Comb

routine on input Ti is invoked, the following information is known to the algorithm, conditioning on

the history:

• there exist solution points at the locations qj , for all j = 1, 2, . . . , i− 1;

• there is no point to the left of (below) the line defined by aj and cj , for all j = 1, 2, . . . , i;

• there is no point below the line defined by cj and bj , for all j = 1, 2, . . . , i;

See Figure 6.8 for an illustration. It follows from the properties of the Poisson Point Process

that, conditioned on the above information, the number of points in a triangle of area S inside Ti

follows a Poisson distribution with parameter λ · S. Hence, letting ζiηi being parallel to aibi so

that the triangle T ∗ def
= 4(ciζiηi) has area S∗ def

= c·ln lnλS1
λ , it follows that, with probability at least

1 − 1
(lnλS1)c , the point qi is contained in the triangle T ∗. We bound from above the area of Ti,l by

the area of T ′i,l = 4(aiciηi) and similarly the area of Ti,r by the area of T ′i,r = 4(ζicibi).

From the similarity of the triangles Ti and T ∗ we get

(ζiηi)

(aibi)
=

(ciηi)

(bici)
=

(ζiθi)

(aidi)

CHAPTER 6. THE CHORD ALGORITHM 154

i
a

i
c

ib

i
q'ia

'ib

i
d

i
θ

iζ

i
η

Figure 6.8: Average case area shrinkage property of the Chord algorithm.

Hence,
S∗

S(Ti)
=

1
2(ciηi)(ζiθi)
1
2(bici)(aidi)

=

(
(ciηi)

(bici)

)2

,

which gives (ciηi) = (bici)
√

S∗

S(Ti)
. Therefore,

S(T ′i,l) =
1

2
(aidi)(ciηi) =

1

2
(aidi)(bici)

√
S∗

S(Ti)

=
√
S(Ti) · S∗ =

√
S(Ti) ·

√
c · ln lnλS1

λ
.

Finally,

S(T ′i,r) =
1

2
(ζiθi)(bici) =

1

2

(ciηi)

(bici)
(aidi)(bici) = S(T ′i,l).

This concludes the proof of the lemma. �

Let us choose c ∈
(

1
ln lnλS1

, λS1
ln lnλS1

)
, and let S(T) be the area of a triangle T maintained by

the algorithm at depth d of the recursion. It follows from Lemma 6.4.3 that, with probability at least

1− d
(lnλS1)c ,

S(T) ≤ S
1

2d

1 ·
(
c · ln lnλS1

λ

)1− 1

2d

,

CHAPTER 6. THE CHORD ALGORITHM 155

where to bound the probability of the above event we have taken a union bound only over the events

on the path of the recursion tree connecting T to the root of the recursion. Now consider the top

d∗ := dlog2 lnλS1e levels of the recursion tree of the algorithm. The tree has at most 2 · lnλS1

internal nodes. Notice that the tree in general has many internal nodes with out-degree 1. Intuitively,

for each such node the algorithm performs a redundant call to Comb. Using Lemma 6.4.3 and a

union bound it follows that, with overall probability at least 1− 2·lnλS1
(lnλS1)c , the area of every triangle at

depth d∗ of the recursion tree is at most S∗∗ := (e · c · ln lnλS1)/λ, where we used our assumption

on the range of c.

Let A be the event that all the nodes (triangles) maintained by the algorithm at depth d∗ of the

recursion tree (if any) have area at most S∗∗. We just argued that the probability of the eventA is at

least 1− 2
(lnλS1)c−1 . We now show the following:

Lemma 6.4.4. Conditioning on the event A, the expected performance ratio of the algorithm is

O (log log λS1).

Proof of Lemma 6.4.4. Let T be the recursion tree of the algorithm pruned at level d∗, let V be the

set of nodes of T ‡, and let Ld∗ be the subset of nodes in V that lie at depth d∗ from the root. (Note

that the set Ld∗ is a subset of the leaves of T .) For a triangle (node) T maintained by the algorithm

at depth d∗ of the recursion, that is T ∈ Ld∗ , we let the random variable XT denote the number of

points inside T . We denote by L′ the set of lowest non-leaf nodes of the tree T . As in the worst-case

analysis, we have OPTε ≥ |L′|. Also note that |V| ≤ 3d∗|L′| and that the Chord algorithm makes

a call to Comb for every node in the tree.

We condition on the informationF available to the algorithm in the first d∗ levels of its recursion-

tree (without the information obtained from processing – i.e. calling Comb for – any triangle at

depth d∗). By assumption F satisfies the event A. Moreover, conditioning on the information F ,

for all T ∈ Ld∗ , XT follows a Poisson distribution with parameter λ ·S(T). So, given that the event

A holds, we have E[XT F] ≤ λ · S∗∗.

Also recall that the number of Comb calls performed by the algorithm on a triangle T containing

a total number of XT points is at most 2XT . Hence, the expected total number of calls performed

‡We remind the reader that by convention we do not have a node in the tree for those triangles T = 4(aibici) for

whichRD(ci, aibi) ≤ ε.

CHAPTER 6. THE CHORD ALGORITHM 156

by the algorithm is at most

E[CHORDε | F] ≤ |V|+ 2 ·
∑
T∈Ld∗

E[XT | F]

≤ |V|+ 2 |Ld∗ | · λ · S∗∗

≤ |V|+ 4|L′| · λ · S∗∗

≤ |L′| · (3d∗ + 4λ · S∗∗),

where we made use of the fact that |Ld∗ | ≤ 2 |L′|. So, conditioning on the information F available

to the algorithm in the first d∗ levels of its recursion tree (before the processing of any triangle in

the d∗-th level), the expected performance ratio of the algorithm is

E
[

CHORDε

OPTε
F
]
≤ E

[
CHORDε

|L′|
F
]

≤ (3d∗ + 4λ · S∗∗)

= O (log log λS1) .

Integrating over all possible F inside A concludes the proof of the lemma. �

From Lemma 6.4.4 we have that

E
[

CHORDε

OPTε
A
]

= O (log log λS1) ,

and from the discussion above we have that Pr
[
Ā
]
≤ 2

(lnλS1)c−1 . Hence, we have established the

following.

Lemma 6.4.5. For c ∈
(

1
ln lnλS1

, λS1
ln lnλS1

)
, there exists an event A, with Pr[A] ≥ 1 − 2

(lnλS1)c−1 ,

such that the expected performance ratio of the algorithm conditioning on A is O (log log λS1).

Let B be the event that all the triangles at the level dlog2 λS1e of the recursion tree of the

algorithm (if any) have area at most (e · c′ · lnλS1)/λ. With the same technique, but using different

parameters in the argument, we can also establish the following:

Lemma 6.4.6. For c′ ∈
(

1
lnλS1

, λS1
lnλS1

)
, there exists an event B, with Pr[B] ≥ 1 − 2

(λS1)c′−1 , such

that the expected performance ratio of the algorithm conditioning on B is O (log λS1).

Finally, the performance ratio can be bounded by twice the total number of points in the triangle

at the root of the recursion tree. Hence,

CHAPTER 6. THE CHORD ALGORITHM 157

Lemma 6.4.7. The expected performance ratio of the algorithm is O(λS1).

We want to use Lemmas 6.4.5, 6.4.6 and 6.4.7 to deduce that the expected performance ratio

of the algorithm is O (log log λS1). This may seem intuitive, but it is in fact not immediate. For

technical purposes let us define the event C = B \ A, where A is the event defined in the proof

of Lemma 6.4.5. It is easy to see that conditioned on C the expected performance ratio of the

algorithm can still be bounded by O(log λS1), since this expectation is affected only by whatever

happens at level dlog2 λS1e of the recursion tree and below. On the other hand, using the fact that

Pr[A] ≥ 1− 2
(lnλS1)c−1 , it follows that

Pr[C] ≤ 2

(lnλS1)c−1
.

Now we can bound the expectation of the performance ratio as follows:

E
[

CHORDε

OPTε

]
≤ E

[
CHORDε

OPTε
A
]
· Pr[A]

+ E
[

CHORDε

OPTε
C
]
· Pr[C]

+ E
[

CHORDε

OPTε
A ∪ C

]
· Pr

[
A ∪ C

]
≤ O(log log λS1) ·

(
1− 2

(lnλS1)c−1

)
+O(log λS1) · 2

(lnλS1)c−1

+E
[

CHORDε

OPTε
A ∪ C

]
· Pr

[
A ∪ C

]
.

To conclude, we need to bound the last term of the above expression. Note first that B ⊆ A ∪ C.

Hence,

Pr
[
A ∪ C

]
≤ 2

(λS1)c′−1
.

We again use the fact that performance ratio is bounded by twice the total number of points in the

triangle at the root of the recursion tree. This number X follows a Poisson random variable with

parameter λ · S1. Hence, we have

E
[

CHORDε

OPTε
A ∪ C

]
· Pr

[
A ∪ C

]
≤ 2 · E

[
X A ∪ C

]
· Pr

[
A ∪ C

]
.

To bound the right hand side of the above we use the following technical lemma.

CHAPTER 6. THE CHORD ALGORITHM 158

Lemma 6.4.8. Let X be a Poisson(λ) random variable, with λ ≥ 1, and let E be some event. Then

E[X | E] Pr[E] ≤ max

{
1

λ
,O(λ3) Pr[E]

}
.

Proof of Lemma 6.4.8. Let k∗ be such that Pr[X ≥ k∗ + 1] < Pr[E] ≤ Pr[X ≥ k∗]. Clearly,

E[X | E] Pr[E] ≤
+∞∑
i=k∗

i · Pr[X = i] =
+∞∑
i=k∗

i · e
−λλi

i!

= λ

+∞∑
i=k∗−1

e−λλi

i!
= λPr[X ≥ k∗ − 1].

Now we distinguish two cases. If k∗ − 1 ≥ 2λ2, then from Chebyshev’s inequality we get:

Pr[X ≥ k∗ − 1] ≤ 1

λ2
.

Hence,

E[X | E] Pr[E] ≤ 1

λ
.

If k∗ − 1 ≤ 2λ2, then

Pr[X = k∗] ≤ k∗ + 1

λ
Pr[X = k∗ + 1] ≤ O(λ) Pr[E]

and

Pr[X = k∗ − 1] ≤ (k∗ + 1)2

λ2
Pr[X = k∗ + 1] ≤ O(λ2) Pr[E].

Hence,

E[X | E] Pr[E] ≤ λ · Pr[X ≥ k∗ − 1]

≤ λ ·
(

Pr[E] + Pr[X = k∗ − 1] +

Pr[X = k∗]
)

≤ O(λ3) · Pr[E].

This concludes the proof of the lemma. �

From Lemma 6.4.8 we obtain

E
[

CHORDε

OPTε
A ∪ C

]
· Pr

[
A ∪ C

]
≤

≤ max

{
1

λS1
, O((λS1)3) · Pr

[
A ∪ C

]}
≤ max

{
1

λS1
, O((λS1)3)

2

(λS1)c′−1

}
.

CHAPTER 6. THE CHORD ALGORITHM 159

Choosing c′ = 4, the above RHS becomes O(1). Plugging this into (6.5) with c = 2 gives

E
[

CHORDε

OPTε

]
= O(log log(λS1)).

This concludes the proof of Theorem 6.4.2. �

6.4.1.2 Product Distributions.

We now state our theorem for product distributions.

Theorem 6.4.9. Let n points be chosen independently from a γ-balanced distribution on S1, where

S1 is the triangle at the root of the chord algorithm’s recursion tree, and γ ∈ [0, 1) some constant.

The expected performance ratio of the algorithm on this instance is Oγ(log log n).

Proof. The proof has the same overall structure as the proof of Theorem 6.4.2, but the details are

more elaborate. We emphasize below the required modifications to the argument. In the arguments

below we assume that n ≥ 12. Otherwise, the bound on the performance ratio trivially holds.

We show first an area shrinkage lemma, similar to Lemma 6.4.3.

Lemma 6.4.10 (Area Shrinkage-Product Distributions). Let Ti, Ti,l and Ti,r be as in the statement

of Lemma 6.4.3. Let also T ′i = 4(a′icib
′
i). See Figure 6.8. Finally, suppose that Ti is processed at

recursion depth at most dlog2 lnne − 1. For all c > 0, with probability at least 1 −
(

1
lnn

) c(1−γ)2
2

conditioning on the information available to the algorithm,

S(Ti,l), S(Ti,r) ≤
√
S(Ti)S1 ·

√
c · ln lnn

n
;

and S(T ′i) ≤ S1
c · ln lnn

n
.

Proof of Lemma 6.4.10. We follow the proof of Lemma 6.4.3 with the appropriate modifications.

Let Ti be the triangle maintained by the algorithm at some node i of the recursion tree, and suppose

that Ti is at depth at most dlog2 lnne − 1 from the root. The information available to the algorithm

when it processes Ti is

• the location of all points qj , j = 1, . . . , i; so, in particular, the location of at most 2 lnn points

is known (given our assumption about the depth);

• moreover, there is no point to the left of the line defined by aj and cj , for all j = 1, 2, . . . , i,

or below the line defined by cj and bj , for all j = 1, 2, . . . , i.

CHAPTER 6. THE CHORD ALGORITHM 160

Given this information the probability that, among the remaining ni ≥ n − 2 lnn points whose

location is unknown, none falls inside a triangle T of area S inside Ti, is at most(
1− (1− γ)2 S

S1

)ni
.

Indeed, let T ∗i ⊆ T1 be the subset of the root triangle which is available at step i for the location of

qi; this is the convex set below the line a1b1, to the right of all lines ajcj , for all j = 1, 2, . . . , i, and

above all lines cjbj , for all j = 1, 2, . . . , i. The probability that a point whose location is unknown

falls inside T ⊆ T ∗i is

D [T]

D[T ∗i]
≥ (1− γ)U [T]

U [T ∗i]/(1− γ)
≥ (1− γ)U [T]

U [T1]/(1− γ)
= (1− γ)2 S

S1
.

Choosing S def
= S1

c·ln lnn
n , the probability becomes

(1− γ)2 · c · ln lnn

n
.

Hence, the probability that T is empty is at most

(
1− c(1− γ)2 ln lnn

n

)ni
≤ e−c(1−γ)2 ln lnn

n
ni =

(
1

lnn

) c(1−γ)2
2

.

The proof of the lemma is concluded by similar arguments as in the proof of Lemma 6.4.3. �

Using Lemma 6.4.10 and the union bound, we can show that, with probability at least

1− 2

(lnn)
c(1−γ)2

2
−1
,

the following are satisfied:

• all triangles maintained by the algorithm at depth dlog2 lnne of its recursion tree have area at

most

S1 ·
e · c · ln lnn

n
.

• for every node (triangle) i in the first dlog2 lnne − 1 levels of the recursion tree

S(T ′i) ≤ S1
c · ln lnn

n
,

where T ′i is defined as in the statement of Lemma 6.4.10.

CHAPTER 6. THE CHORD ALGORITHM 161

The proof of the second assertion above follows immediately from Lemma 6.4.10 and the union

bound. The first assertion is shown similarly to the analogous assertion of Theorem 6.4.2. For the

above we assumed that c ∈
(

1
ln lnn ,

n
ln lnn

)
.

Now let us call Ac the event that the above assertions are satisfied. We can show the following.

Lemma 6.4.11. Suppose c ≤ n
4·lnn·ln lnn . Conditioning on the event Ac, the expected performance

ratio of the algorithm is Oc,γ (log log n).

Proof of Lemma 6.4.11. The proof is in the same spirit to the proof of Lemma 6.4.4, but more care

is needed. We need to argue that, under Ac, the expected number of points falling inside a triangle

at depth dlog2 lnne of the recursion tree is Oc,γ(log log n). Using rationale similar to that used

in the proof of lemma 6.4.10 above, we have the following. Let Ti be the triangle maintained by

the algorithm at a node i at depth dlog2 lnne of the recursion tree. Let also p be a point whose

location is unknown to the algorithm (conditioning on the information known to the algorithm after

processing the first dlog2 lnne−1 levels of the recursion tree). The probability that the point p falls

inside Ti is
D [Ti]

D[T ∗i]
≤ U [Ti] /(1− γ)

(1− γ)U [T ∗i]
,

where T ∗i is the region below the line a1b1, above the lines ajcj , for all j inside the first dlog2 lnne

levels of the recursion tree, and above the lines cjbj , for all j in the first dlog2 lnne levels of the

recursion tree. To upper bound the probability that p falls inside Ti, we need a lower bound on the

size of the area S(T ∗i). Such bound can be obtained by noticing that

S(T ∗i) = S1 −
∑
j

S(T ′j),

where the summation ranges over all j in the first dlog2 lnne−1 levels of the recursion tree. Hence,

S(T ∗i) ≥ S1 − 2 lnn · S1
c · ln lnn

n

= S1 ·
n− 2 · c · lnn · ln lnn

n
≥ S1

2
,

where we used that c ≤ n
4·lnn·ln lnn . Hence, the probability that a point falls inside Ti is at most

U [Ti] /(1− γ)

(1− γ)U [T ∗i]
≤ 1

(1− γ)2

S1 · e·c·ln lnn
n

S1/2
≤ 2 · e · c · ln lnn

(1− γ)2n
.

CHAPTER 6. THE CHORD ALGORITHM 162

Therefore, the expected number of points falling in Ti is at most

2 · e · c · ln lnn

(1− γ)2
.

�

We have established the following

Lemma 6.4.12. For c ∈
(

1
ln lnn ,

n
4·lnn·ln lnn

)
, there exists an eventAc, with Pr[Ac] ≥ 1− 2

(lnn)0.5c(1−γ)
2−1

,

such that the expected performance ratio of the algorithm conditioning on Ac is Oc,γ (log log n).

We can also show the equivalent of Lemma 6.4.6. Namely,

Lemma 6.4.13. For c′ ∈
(

1
lnn ,

lnn
6

)
, there exists an event Bc′ , with Pr[Bc′] ≥ 1 − 2

n0.5c′(1−γ)2−1
,

such that the expected performance ratio of the algorithm conditioning on B is Oc′,γ
(
(log n)3

)
.

Proof. Lemma(Lemma 6.4.13) The proof is similar to the proof of Lemma 6.4.12, except the bound

is now a bit trickier. For c′ ∈
(

1
lnn ,

lnn
6

)
, let Bc′ be the event that

• all the triangles maintained by the algorithm at depth dlog2 ne of its recursion tree have area

at most S1 · e·c
′·lnn
n .

• for every node i inside the first dlog2 ne − 1 levels of the recursion tree

S(T ′i) ≤ S1
c′ · lnn
n

,

where S(T ′i) is defined as in the statement of Lemma 6.4.10.

Using arguments similar to those in the proof of Lemma 6.4.10 and the union bound, we obtain that

Pr[Bc′] ≥ 1− 2

n0.5c′(1−γ)2−1
.

Now let T be the recursion tree of the algorithm pruned at level dlog2 ne. We define the set L′ as

in the proof of Lemma 6.4.4, but with d∗ replaced by dlog2 ne. In that proof we argued that any

optimal ε-approximate convex pareto curve needs to use at least |L′| points. Moreover, we argued

that the total number of nodes inside T is at most 3dlnne|L′|. Whenever the algorithm processes a

triangle, a planar region of area at most S1 · c
′·lnn
n is removed from T1 (the root triangle). Therefore,

after finishing the processing of the first dlnne − 1 levels of the tree, a total area of at most

3dlnneS1 ·
c′ · lnn
n
|L′|

CHAPTER 6. THE CHORD ALGORITHM 163

is removed from T1. We distinguish next two cases. If |L′| ≥ n
dlnne3 , then the size of the optimum is

at least n
dlnne3 points. Since there is a total of n points (and the algorithm never performs more than

2n Comb calls), it follows that in this case the performance ratio is O(dlnne3). On the other hand,

if |L′| ≤ n
dlnne3 , then the total area that has been removed from T1 is at most 3S1 · c′

lnn . Hence, the

remaining area is at least S1/2, assuming c′ ≤ lnn/6. Given this bound it follows that the expected

number of points inside a triangle at level dlnne of the recursion tree is at most

2 · e · c′ · lnn
(1− γ)2

.

The remaining of the argument is similar to that used in the proof of Lemma 6.4.11. Using the above

and noting that the performance ratio “paid” within the first dlog2 ne−1 levels of the recursion tree is

at mostOc′,γ(lnn), we can conclude the proof via arguments parallel to the proof of Lemma 6.4.12.

�

Now let us choose c = 8
(1−γ)2

and c′ = 4
(1−γ)2

. From Lemmas 6.4.12 and 6.4.13 we have that

Pr[Ac] ≥ 1− 2

(lnn)3
and Pr[Bc] ≥ 1− 2

n
.

Given this, we can conclude the proof Theorem 6.4.9. The argument is the same as the end of

the proof of Theorem 6.4.2, except that now we can trivially bound the performance ratio of the

algorithm by 2n in the event A ∪ C. �

6.4.2 Lower Bounds.

We prove lower bounds on the expected performance ratio of the algorithm that match our upper

bounds. For the case of the PPP we prove

Theorem 6.4.14. There exists a family of instances for which the expected performance ratio of the

Chord algorithm is Ω(log log λS1), where S1 is the area of the triangle at the root of the recursion

tree of the algorithm and λ is the intensity of the Poisson Point Process. In particular, we can select

the parameters so that λS1 = 2m/ε, which yields a lower bound of Ω(logm+ log log 1/ε).

Proof. The lower bound applies even if the Comb routine is exact. In analogy to the worst-case

(Section 6.3.1), the hard instances for the average case lower bound are “skewed”. In particular, the

initial triangle T1 = 4(a1b1c1) (at the root of the recursion tree) will be right and (a1c1) >> (b1c1).

CHAPTER 6. THE CHORD ALGORITHM 164

To avoid clutter in the expressions, we will write the proof for the case m = 1. The generalization

for all values of m is similar. We select a1 = (1, 2), b1 = (1 + 2ε, 1) and c1 = (1, 1). We also

choose the intensity of the Poisson process to be λ = 1/ε2. Note that λS1 = 1/ε, hence we get an

Ω(log log 1/ε) lower bound.

As in the worst-case lower bound, given the endpoints, it is clear that OPTε = O(1) (with

probability 1). We will show that the chord algorithm needs Ω(log log 1
ε) calls to the Comb routine

to find an ε-convex Pareto.

In particular, we are going to argue that for ε small enough, with constant probability, there

exists a path of length Ω(log log 1
ε) in the recursion tree of the algorithm. The path P is defined

by the triangles with bi = b1, i.e. the triangles corresponding to the “right” subproblem in every

subdivision, see Figure 6.1.

Recall from the worst-case arguments that for such “skewed” instances, the ratio distance is

very well approximated by the horizontal distance. Hence, we will consider the latter for the rest

of the proof without loss of generality. For notational convenience in the arguments below we shift

the coordinate system to the point c1, so that c1 = (0, 0), a1 = (0, 1) and b1 = (2ε, 0). (Note that

the horizontal distance is invariant under translation.) Also, for convenience we label the triangles

in the path P by T1, T2, . . ., and we let the vertices of triangle Ti be ai = (xi, yi), ci = (x′i, 0), and

bi = b1. Suppose that when the chord algorithm processes the triangle Ti, the Comb routine returns

the point qi on a line a′ib
′
i parallel to aibi (as in Figure 6.1). Clearly, we have b′i = (x′i+1, 0) = ci+1

and qi = (xi+1, yi+1) = ai+1. Let us call Xi, Yi the coordinates of the point a′i.

It is easy to see that, as long as x′i < ε the node of the recursion tree corresponding to triangle

Ti is not a leaf, i.e. the algorithm will recurse on Ti. We show the following:

Lemma 6.4.15. For ε small enough, with probability at least 1−4
ln ln 1

ε

(ln 1
ε
)1/4

, for all i ∈ {1, . . . , ln ln 1/ε},

yi ≥ c′i · ε
1− 1

2i−1 /log(1/ε);

x′i ≤ c′′i · ε
1+ 1

2i−1 · log(1/ε),

where c′i = 21− 1

2i and c′′i =
√

2 ·
∑i

j=1 21/2j .

Proof of Lemma 6.4.15. Inductively we are going to show that, if the assertion of the theorem holds

for some i, then it also holds for i + 1 with probability at least 1 − 4 1
(ln 1

ε
)1/4

. First, by the law of

CHAPTER 6. THE CHORD ALGORITHM 165

similar triangles we have

yi
Yi

=
2ε− x′i
x′i+1 − x′i

. (6.5)

From the properties of the Poisson Point Process we have the following: conditioning on the infor-

mation available to the algorithm when it processes the triangle Ti, if a (measurable) region inside

Ti has area ε2 ln 1/ε, then the number of points inside this region follows a Poisson distribution

with parameter ln 1/ε. Hence, with probability at least 1− ε, the region contains at least one point.

Using (6.5) and the induction hypothesis, this implies that, with probability at least 1− ε,

x′i+1 − x′i ≤
2√
c′i
· log

1

ε
· ε1+ 1

2i ;

hence

x′i+1 ≤

(
2√
c′i

+ c′′i

)
· log

1

ε
· ε1+ 1

2i .

On the other hand, if the area of a region is less than ε2/
√

ln(1/ε) the probability that a point

is contained in that region is at most 1/
√

ln (1/ε). This implies that, with probability at least

1− 1/
√

ln (1/ε),

Yi ≥
√
c′i · ε

1− 1

2i

(ln 1/ε)3/4
.

By the properties of the Poisson Point Process it follows that the point qi is uniformly distributed

on the segment a′ib
′
i. Hence, with probability at least 1 − 1

(ln 1
ε
)
1
4

, it holds yi+1 ≥
√

2c′i·ε
1− 1

2i

ln 1/ε . This

concludes the proof. �

Note first that, for all i:
√

2 ·
i∑

j=1

21/2j ≤ 2
√

2 · i.

Hence, by Lemma 6.4.15, for ε small enough, with probability at least 1− 4
ln ln 1

ε

(ln 1
ε
)1/4

,

xi ≤ 2
√

2 · ln ln 1/ε · ε1+ 2
ln 1/ε · ln(1/ε),

and yi ≥ ε1−
2

ln 1/ε /log(1/ε),

for all i ≤ ln ln 1/ε. Hence, all the triangles T1, . . ., Tln ln 1/ε survive in the recursion tree of

the algorithm, since the algorithm maintains no certificate that the points already computed are

enough to ε-cover. This concludes the proof that the expected performance ratio of the algorithm is

O(log log λS1). �

CHAPTER 6. THE CHORD ALGORITHM 166

6.5 Conclusions and Open Problems

We studied the Chord algorithm, a simple popular greedy algorithm that is used (under different

names) for the approximation of convex curves in various areas. We analyzed the performance ratio

of the algorithm, i.e. the ratio of the cost of the algorithm over the minimum possible cost required

to achieve a desired accuracy for an instance, with respect to the Hausdorff and the ratio distance.

We showed sharp upper and lower bounds, both in a worst case and in an average setting. In the

worst case the Chord algorithm is roughly at most a logarithmic factor away from optimal, while in

the average case it is at most a doubly logarithmic factor away.

We showed also that no algorithm can achieve a constant ratio in the number of Calls perfor-

mance metric, in particular, at least a doubly logarithmic factor is unavoidable. We leave as an

interesting open problem to determine if there is an algorithm with a better performance than the

Chord algorithm, and to determine what is the best ratio that can be achieved. Another interest-

ing direction of further research is to analyze the performance of the Chord algorithm in three and

higher dimensions, and to characterize what is the best performance ratios that can be achieved by

any algorithm.

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 167

Chapter 7

Conclusions and Open Problems

This work brings a new way of treating systematically optimization problems with multiple objec-

tives genuinely as such, rather than forcing them into a single objective. The main theme of the

thesis is the design and analysis of efficient approximation algorithms that are applicable to wide-

classes of multi-objective optimization problems in a well-defined natural framework. Our goal has

been to develop general methods for addressing the issues of the size of the approximate Pareto

set, the time to construct it, and the approximation error that is achievable. All our algorithms are

guaranteed to run in polynomial time and output a succinct approximate representation of the set of

undominated solutions (Pareto set) for the instance of the problem at hand.

Depending on the setting, different notions of approximation to the Pareto set may be appropri-

ate. In Chapter 3, we consider the notion of the ε-Pareto set, while in Chapters 4-6 we define and

study the notion of the ε-convex Pareto set, as the appropriate one for convex problems. Moreover,

different applications dictate for different notions for the performance of an algorithm. In Chapters

3-5, our goal was to construct an approximation to the Pareto set using as few solutions as possible

(with the requirement that our algorithms run in polynomial time, of course). Hence, our metric in

this setting is the ratio between the number of points output by our algorithm divided by the mini-

mum number of points. In Chapter 6, our goal was to minimize the number of queries our algorithm

performs, as compared to the minimum number of queries required on the given instance. Hence,

our metric in this setting is the ratio between these two quantities1

1We note that, in Chapter 6, the performance ratio is defined as the ratio between the number of queries of our

algorithm and the minimum number of points required for an ε-approximation. However, as argued there, these two

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS 168

In Chapter 3, we study the problem of computing an ε-Pareto set with as few points as possi-

ble. We obtained a tight factor-2 approximation for bicriteria problems, a constant factor pseudo2-

approximation for 3 criteria and a logarithmic pseudo-approximation for d > 3 criteria. The most

important remaining open problem is the resolution of Conjecture 3.3.13: Is there a constant factor

pseudo-approximation for d > 3 criteria? We believe this is an important open problem and hope

to answer it in the affirmative. Note that, by the results of Chapter 3, this would also resolve the

approximability of the dual problem.

In Chapters 4-5 we define and study the notion of the ε-convex Pareto set as the appropriate

notion of approximation to the Pareto set for convex problems. We obtained a necessary and suffi-

cient condition for its efficient computability, in terms of an efficient routine Comb for optimizing

(exactly or approximately) monotone linear combinations of the objectives. We then considered

the problem of constructing an ε-convex Pareto set using as few solutions as possible, and obtained

efficient algorithms with tight or nearly tight performance guarantees for the case of 2 objectives.

Our results for 3 (and more) objectives are not tight (as far as we know). Obtaining algorithms with

improved guarantees is a most important open problem. We remark that almost nothing is known

about the approximability of the dual problem in the convex setting, for d > 3. We believe that

progress in this direction is attainable.

In Chapter 6, we consider the problem of computing an ε-convex Pareto set using as few queries

to Comb as possible. We focused on the case of two criteria, and analyzed the performance of the

Chord algorithm – a natural Greedy algorithm for this purpose. We gave a detailed analysis for

the primal problem (given an error ε > 0, minimize number of queries k). A related question

concerns the performance of the Chord algorithm for the dual problem (given k queries, minimize

ε). The main remaining open problem for the bi-objective case is to obtain an algorithm with an

asymptotically optimal performance guarantee. We would like to stress that the case of 3 (or more)

objectives is entirely open. Is there a generalization of the Chord algorithm with a poly-logarithmic

performance guarantee? And what is the optimal ratio attainable by any algorithm with access to a

Comb routine?

quantities are always within a factor of 2 for the case of two criteria.

2Recall that for 3 or more objectives, the algorithms obtain an ε′-Pareto set for some ε′ > ε.

BIBLIOGRAPHY 169

Bibliography

[AAR] V. S. Anil Kumar, Sunil Arya, H. Ramesh. Hardness of Set Cover with Intersection 1.

ICALP, pp. 624-635, 2000.

[ABK1] E. Angel, E. Bampis, A. Kononov. An FPTAS for Approximating the Unrelated Parallel

Machines Scheduling Problem with Costs. In Proc. ESA, pp. 194–205, 2001.

[ABG] E. Angel, E. Bampis and L. Gourves. Approximating the Pareto curve with local search

for the bicriteria TSP (1, 2) problem. Theor. Comput. Sci. 310(13), 135146 (2004).

[ABK2] E. Angel, E. Bampis, A. Kononov. On the approximate trade-off for bicriteria batching

and parallel machine scheduling problems. Theoretical Computer Science, 306(1-3), pp.

319–338 (2003).

[ABRSY] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, C.K. Yap. Finding minimal convex nested

polygons. Inform. and Control, 83, pp. 98-110, 1989.

[ABV1] H. Aissi, C. Bazgan, D. Vanderpooten. Approximation Complexity of Min-Max (Regret)

Versions of Shortest Path, Spanning Tree and Knapsack. In Proc. ESA, pp. 862–873, 2005.

[ABV2] H. Aissi, C. Bazgan, D. Vanderpooten. Complexity of Min-Max (Regret) Versions of Cut

problems. In Proc. ISAAC, pp. 789–798, 2005.

[AHK] S. Arora, E. Hazan, S. Kayle. The multiplicative weights update method: a meta-algorithm

and applications. Manuscript, 2006.

[AN] Y. P. Aneja, K. P. K. Nair. Bicriteria transportation problems. Management Science, pp.

73-78, 1979.

BIBLIOGRAPHY 170

[AN+] H. Ackermann, A. Newman, H. Röglin, and B. Vöcking. Decision Making Based on

Approximate and Smoothed Pareto Curves. Theoretical Computer Science, 378(3), p.

253–270 (2007).

[Ar] Archimedes. Quadratura parabolae. Archimedis opera omnia, vol II, J. L. Heiberg (ed.),

B. G. Teubner, Leibzig, pp. 261-315, 1913.

[Ar1] A. F. Archer. Two O(log∗ k)-approximation algorithms for the asymmetric k-center prob-

lem. In Proc. IPCO, pp. 1–14, 2001.

[Ar2] A. F. Archer. Personal communication, 2007.

[As] P. Assouad. Densité et Dimension. Ann. Institut Fourier, Grenoble, 3:232–282, 1983.

[AS1] P.K. Agarwal and M. Sharir. Efficient Algorithms for Geometric Optimization. ACM

Computing Surveys, 30, 412-458, 1998.

[AS2] P.K. Agarwal and S. Sen. Randomized Algorithms for Geometric Optimization Problems.

In Handbook of Randomized Computation, Kluwer Academic Press, The Netherlands, pp.

151-201, 2001.

[AZ] A. Armon, U. Zwick. Multicriteria Global Minimum Cuts. Algorithmica, 46, pp. 15–26,

2006.

[BMP] Markus Blser, Bodo Manthey and Oliver Putz. Approximating Multi-criteria Max-TSP.

In ESA, 2008.

[BBGS] A. Berger, V. Bonifaci, F. Grandoni, G. Schäfer. Budgeted Matching and Budgeted Ma-

troid Intersection Via the Gasoline Puzzle. In IPCO., pp. 273–287, 2008.

[BCM] H. Brönnimann, B. Chazelle, J. Matoušek. Product range spaces, sensitive sampling, and

derandomization. SIAM J. Comput., 28 (1999), 1552-1575.

[BG] H. Brönnimann, M.T. Goodrich. Almost Optimal Set Covers in Finite VC-Dimension.

Discrete and Computational Geometry, 14(4): 463–479 (1995).

BIBLIOGRAPHY 171

[BHR] R. E. Burkard and H. W. Hamacher and G. Rote. Sandwich approximation of univari-

ate convex functions with an application to separable convex programming. Naval Res.

Logistics, 38, pp. 911-924, 1991.

[BV04] R. Beier and B. Vocking. Typical Properties of Winners and Losers in Discrete Optimiza-

tion. In SIAM J. Comput., 35(4), p. 855-881, 2006.

[Car] P. Carstensen. The complexity of some problems in parametric linear and combinatorial

programming. PhD Thesis, University of Michigan, 1983.

[CCS] J. Cohon, R. Church, D. Sheer. Generating multiobjective tradeoffs: An algorithm for the

bicriterion problem. Water Resources Research 15, pp. 1001-1010, 1979.

[Chan] R. Chandrasekaran. Minimal ratio spanning tree. Networks 7, pp. 335–342, 1977.

[Chv] V. Chvátal. A greedy heuristic for the set covering problem. Math. Oper. Res., 4: 233–235

(1979).

[CG+] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsartz, R. Krauthgamer, S. Naor.

Asymmetric k-center is log∗ n-hard to Approximate. J. ACM, 52(4): 538–551 (2005).

[CJK] T. C. E. Cheng, A. Janiak, M. Y. Kovalyov. Bicriterion Single Machine Scheduling with

Resource Dependent Processing Times. SIAM J. Optimization, 8(2), pp. 617–630, 1998.

[CHSB] D. L. Craft, T. F. Halabi, H. A. Shih, T. R. Bortfeld. Approximating convex Pareto surfaces

in multiobjective radiotherapy planning. Med. Phys., 33, pp. 3399-3407, 2006.

[Cl] K. Clarkson. Algorithms for polytope covering and approximation. WADS, 246-252,

1993.

[Coh] J. Cohon. Multiobjective Programming and Planning. Dover, 2004.

[CX] G. Chen, G. Xue. A PTAS for weight constrained Steiner trees in series-parallel graphs.

Theoretical Computer Science, 1-3(304), pp. 237–247, 2003.

[CX2] G. Chen, G. Xue. k-pair delay constrained minimum cost routing in undirected networks.

In Proc. SODA, pp. 230–231, 2001.

BIBLIOGRAPHY 172

[Cli] J. Climacao, Ed. Multicriteria Analysis. Springer–Verlag, 1997.

[CMH] K. Chatterjee, R. Majumdar, T.A. Henzinger. Markov Decision Processes with Multiple

Objectives. STACS, 325-336, 2006.

[CV] K. L. Clarkson, K. Varadarajan. Improved approximation algorithms for geometric set

cover. Discrete & Computational Geometry, 37(1):43-58, 2007.

[CY] R. Cole, C. Yap. Shape from probing. J. Algorithms 8, pp. 19-38, 1987.

[Das] G. Das. Approximation schemes in computational geometry. PhD Thesis, U. Wisconsin,

1990.

[DasDen] Indraneel Das and J. E. Dennis Normal-Boundary Intersection: A New Method for

Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM J.

Optim., 8, pp. 631-657.

[De] T. Dey. Improved bounds on Planar k-sets and k-levels. FOCS, pp. 165–171, 1997.

[DJSS] J. Dongarra, E. Jeannot, E. Saule, Z. Shi. Bi-objective Scheduling Algorithms for Optimiz-

ing Makespan and Reliability on Heterogeneous Systems. In Proc. SPAA, pp. 280–288,

2007.

[SOD] H. Safer, J.B. Orlin, and M. Dror. Fully polynomial approximation in multi-criteria com-

binatorial optimization. Technical report, MIT Sloan School of Management, 2004.

[DP] D. Douglas, T. Peucker. Algorithms for the reductions of the number of points required to

represent a digitized line or its caricature. The Canadian Cartographer 10(2), pp. 112-122,

1973.

[DDY] C. Daskalakis, I. Diakonikolas and M. Yannakakis. How good is the Chord Algorithm ?

In SODA, 2010.

[DY1] I. Diakonikolas and M. Yannakakis. Small Approximate Pareto Sets for Bi-objective

Shortest Paths and Other Problems. In SIAM J. Comput., 2009.

[DY2] I. Diakonikolas, M. Yannakakis. Succinct Approximate Convex pareto Curves. Proc.

ACM-SIAM Symp. on Discrete Algorithms, pp. 74-83, 2008.

BIBLIOGRAPHY 173

[Ehr] M. Ehrgott. Multicriteria optimization, 2nd edition, Springer–Verlag, 2005.

[EG] M. Ehrgott, X. Gandibleux. An annotated bibliography of multiobjective combinatorial

optimization problems. OR Spectrum 42, pp. 425–460, 2000.

[EKVY] K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-Objective Model

Checking of Markov Decision Processes. Proc. 13th Int. Conf. on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’07), 2007.

[ERS] G. Even, D. Rawitz, S. Shahar. Hitting sets when the VC-dimension is small. Information

Processing Letters, 95(2):358–362, 2005.

[ES] M. J. Eisner, D. G. Severance. Mathematical techniques for efficient record segmentaton

in large shared databases. J. ACM 23(4), pp. 619-635, 1976.

[ESZ] F. Ergun, R. Sinha, L. Zhang. An improved FPTAS for Restricted Shortest Path. Informa-

tion Processing Letters, 83(5):237–239, 2002.

[EV] E. Erkut, V. Verter. Modeling of transport risk for hazardous materials. Operations Re-

search, 46, pp. 625–642, 1998.

[Fei] U. Feige. A threshold of lnn for approximating set cover. JACM, 45(4), pp. 634–652,

1998.

[FBR] B. Fruhwirth, R. E. Burkard, G. Rote. Approximation of convex curves with application

to the bicriteria minimum cost flow problem. European J. of Operational Research 42, pp.

326-338, 1989.

[FGE] J. Figueira, S. Greco, M. Ehrgott, eds. Multiple Criteria Decision Analysis: State of the

Art Surveys, Springer, 2005.

[GJ] M. R. Garey, D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.

[GR] M.X. Goemans, R. Ravi. The Constrained Minimum Spanning Tree Problem. In Proc.

SWAT, 1996, pp. 66–75.

BIBLIOGRAPHY 174

[GR+] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis. Efficient computation of

delay–sensitive routes from one source to all destinations. In Proc. IEEE INFOCOM,

2001.

[Gus] D. Gusfield. Sensitivity Analysis for Combinatorial Optimization. PhD Thesis, UC Berke-

ley, 1980.

[Han] P. Hansen. Bicriterion Path Problems. In Proc. 3rd Conf. Multiple Criteria Decision

Making Theory and Application, pp. 109–127, Springer Verlag LNEMS 177, 1979.

[Has] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics

of Operations Research, 17(1), pp. 36–42, 1992.

[HL] R. Hassin, A. Levin. An efficient polynomial time approximation scheme for the con-

strained minimum spanning tree problem. SIAM J. Comput., 33(2): 261–268 (2004).

[HR] H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals

of Operations Research, 52, pp. 209–230, 1994.

[HW] D. Haussler, E. Welzl. Epsilon-nets and simplex range queries. Discrete Computational

Geometry, 2:127–151, 1987.

[Joh] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System

Sci., 9: 256–278 (1978).

[KN07] J.A. Kelner and E. Nikolova. On the Hardness and Smoothed Complexity of Quasi-

Concave Minimization. In FOCS, 2007.

[KP] V. Koltun, C.H. Papadimitirou. Approximately dominating representatives. Theoretical

Computer Science, 371, pp. 148–154, 2007.

[KPW] J. Komlos, J. Pach, W. Woeginger. Almost tight bounds for Epsilon-Nets. Discrete and

Computational Geometry, 7, pp. 10–15, 1992.

[KW] K. Klamroth and M. Wiecek. Dynamic programming approaches to the multiple criteria

knapsack problem. Naval Research Logistics, 47(1):5776, 2000.

BIBLIOGRAPHY 175

[LB] M. Lindenbaum, A. M. Bruckstein. Blind approximation of planar convex sets. IEEE

Trans. on Robotics and Automation 10(4), pp. 517-529, 1994.

[Lov] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math., 13:

383–390 (1975).

[LR] D. H. Lorenz, D. Raz. A simple efficient approximation scheme for the restricted shortest

path problem. Operations Research Letters, 28(5), pp. 213–219, 2001.

[LY] C. Lund, M. Yannakakis. On the hardness of approximating minimization problems.

JACM, 41(5), pp. 960–981, 1994.

[MagSt] T.L. Magnanti, D. Stratila. Separable Concave Optimization Approximately Equals Piece-

wise Linear Optimization. IPCO, pp. 234–243, 2004.

[MR] B. Manthey, L.S. Ram. Approximation Algorithms for Multi-Criteria Traveling Salesman

Problems. Algorithmica, 2009.

[Mat1] J.Matoušek. Reporting points in halfspaces. FOCS, pp. 207–215, 1991.

[Mat2] J.Matoušek. In J. Pach (editor), New Trends in Discrete and Computational Geometry,

Springer-Verlag, 1993.

[Meg1] N. Meggido. Combinatorial Optimization with Rational Objective Functions Math of OR,

pp. 414–424, 1979.

[Meg2] N. Meggido. Applying Parallel Computation Algorithms in the Design of Serial Algo-

ritmhs. JACM, pp. 852–865, 1983.

[Mit] K. M. Miettinen. Nonlinear Multiobjective Optimization, Kluwer, 1999.

[MitS] J. Mitchell and S. Suri. Separation and Approximation of Polyhedral Objects. SODA, pp.

296–306, 1992.

[MSW] J.Matoušek, R, Seidel, E. Welzl. How to net a lot with little: small ε-nets for disks and

halfspaces. SoCG, pp. 16–22, 1990.

BIBLIOGRAPHY 176

[MuSh] Ketan Mulmuley and Pradyut Shah. A Lower Bound for the Shortest Path Problem. IEEE

Conference on Computational Complexity , pp. 14–21, 2000.

[NK+] E. Nikolova, J.A. Kelner, M. Brand and M. Mitzenmacher. Stochastic Shortest Paths via

Quasi-Convex Maximization. ESA, pp. 552–563, 2006.

[NU] G.L. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital allocation.

Management Science, 15(9):494505, 1969.

[PR] E. Pyrga, S. Ray. New Existence Proofs for ε-Nets. In Proc. SoCG, 2008.

[PV] R. Panigrahy, S. Vishwanathan. An O(log∗ n) approximation algorithm for the asymmet-

ric p-center problem. J. of Algorithms, 27(2), pp. 259–268, 1998.

[PW] J. Pach, W. Woeginger. Some new bounds for Epsilon-Nets. In Proc. 6th ACM Symposium

on Computational Geometry, pages 10–15, 1990.

[PY1] C.H. Papadimitriou, M. Yannakakis. On the Approximability of Trade-offs and Optimal

Access of Web Sources. In Proc. FOCS, pp. 86–92, 2000.

[PY2] C.H. Papadimitriou, M. Yannakakis. Multiobjective Query Optimization. In Proc PODS,

pp. 52–59, 2001.

[Ra] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-

puter Graphics and Image Processing 1, pp. 244-256, 1972.

[Rav+] Many birds with one stone: multi-objective approximation algorithms. R. Ravi, M. V.

Marathe, S.S. Ravi, D.J. Rosenkrantz, H.B. Hunt. STOC, pp. 852–865, 1993.

[RS] R. Raz and S. Safra. A Sub-Constant Error-Probability Low-Degree Test, and a Sub-

Constant Error-Probability PCP Characterization of NP. STOC, pp. 475-484, 1997.

[RF] G. Ruhe and B. Fruhwirth. Epsilon-optimality for biciteria programs and its application

to minimum cost flows. Computing , 44, pp. 21–34, 1990.

[Ro] G. Rote. The convergence rate of the sandwich algorithm for approximating convex func-

tions. Computing, 48, pp. 337-361, 1992.

BIBLIOGRAPHY 177

[RT09] H. Röglin and S.H. Teng. Smoothed Analysis of Multiobjective Optimization. In FOCS,

2009.

[Ru] G. Ruhe. Complexity results for multicriterial and parametric network flows using a patho-

logical graph of Zadeh. Zeitschrift fur Operations Research , 32, pp. 9–27, 1988.

[RW] S. Ruzika, M. M. Wiecek. Approximation Methods in Multiobjective Programming (Sur-

vey paper). J. Opt. Th. and Appl., 126(3), pp. 473-501, 2005.

[TZ] G. Tsaggouris, C.D. Zaroliagis. Multiobjective Optimization: Improved FPTAS for Short-

est Paths and Non-linear Objectives with Applications. In Proc. ISAAC, pp. 389–398,

2006.

[VV] P. Van Mieghen, L. Vandenberghe. Trade-off Curves for QoS Routing. In Proc. INFO-

COM, 2006.

[VC] V. N. Vapnik, A. Ya. Chervonenkis. On the uniform convergence of relative frequencies

to their probabilities. Theory Probab. Appl., 16(2): 264-280, 1971.

[VY] S. Vassilvitskii, M. Yannakakis. Efficiently computing succinct trade-off curves. Theoret-

ical Computer Science 348, pp. 334–356, 2005.

[Wa] A. Warburton. Approximation of Pareto Optima in Multiple-Objective Shortest Path Prob-

lems. Operations Research, 35, pp. 70–79, 1987.

[Ze] M. Zeleny. Linear Multiobjective Programming, Springer, 1974.

[YG] X. Yang, C. Goh. A method for convex curve approximation. European J. of Oper. Res.

97, pp. 205-212, 1997.

	Introduction
	Approximation of the Pareto Set
	Objective Space: Convex or Discrete?
	Minimizing the Computational Effort
	Organization of the Dissertation

	Background
	Basic Definitions
	Multiobjective Optimization Problems
	Pareto Set and Approximations

	Previous Work
	Related Work

	Succinct Approximate Pareto Sets
	Introduction
	Two Objectives
	Preliminaries
	Lower Bound
	Two Objectives Algorithm
	Applications

	d Objectives
	Approximation of the optimal -Pareto set
	The Dual Problem

	Conclusion

	Approximate Convex Pareto Sets
	Efficient Computability: The Comb Problem
	Proof of Theorem 4.1.1
	Discussion

	Succinct Approximate Convex Pareto Sets
	Chapter Organization
	Two Objectives – Explicitly Given Points
	Convex (Objective) Space – problem QC:
	Discrete (Objective) Space – problem QD
	Best k solutions

	Two Objectives – General Results
	Exact Comb routine
	Approximate Comb routine

	d Objectives
	Explicitly Given Points
	Approximate Comb Routine

	The Chord Algorithm
	Introduction
	Model and Statement of Results
	Preliminaries.
	The Chord Algorithm.
	Our Results.

	Worst–Case Analysis
	Lower Bounds.
	Upper Bound.

	Average Case Analysis
	Upper Bounds.
	Lower Bounds.

	Conclusions and Open Problems

	Conclusions and Open Problems

