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Plan
• Survey of techniques used in robust PAC learning of 
halfspaces.

• Recent developments and open problems.
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PAC learning of halfspaces
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Given measurements (𝑥, 𝑦 = 𝑠𝑖𝑔𝑛(𝑤∗ ⋅ 𝑥))

approximately recover 𝑤∗.

+

+

+
+

+
++

+

- -
--

-

-
-

• How is 𝑥 generated?
• 𝑥 ∼ 𝐷,  where 𝐷 is an arbitrary distribution 

over ℝ𝑑



PAC learning of halfspaces
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• What is approximate recovery?
• Input: 𝑥1, 𝑦1 , 𝑥2, 𝑦2, , … (𝑥𝑛, 𝑦𝑛) generated i.i.d. from 𝐷. 

• Output: ℎ:ℝ𝑑 → {±1} such that Pr
𝑥∼𝐷

ℎ 𝑥 ≠ 𝑠𝑖𝑔𝑛 𝑤∗ ⋅ 𝑥 ≤ 𝜖

• Want runtime 𝑝𝑜𝑙𝑦(𝑛) and n = ෨𝑂(
𝑑

𝜖
)

Given measurements (𝑥, 𝑦 = 𝑠𝑖𝑔𝑛(𝑤∗ ⋅ 𝑥))

approximately recover 𝑤∗.



PAC learning of halfspaces

5

Theorem[VC]

If n = ෨𝑂(
𝑑

𝜖
), then w.h.p. 𝑒𝑟𝑟 𝑤 ≤ 𝜖

Constraints

𝑥1, +
(𝑥2, −)

….

(𝑥𝑛, +)

𝑤 ⋅ 𝑥1 > 0
𝑤 ⋅ 𝑥2 < 0

….

𝑤 ⋅ 𝑥𝑛 > 0



PAC learning with malicious noise

6

+

+

+
+

+
++

+

- -
--

-

-
-

• In each draw

• 𝑥, 𝑠𝑖𝑔𝑛 𝑤∗ ⋅ 𝑥 , where 𝑥 ∼ 𝐷 w.p. 1 − 𝜂

• Arbitrary (𝑥, 𝑦) w.p. 𝜂

▪ How much noise 𝜂(𝜖) can be tolerated?

Given corrupted measurements (𝑥, 𝑠𝑖𝑔𝑛(𝑤∗ ⋅ 𝑥))

approximately recover 𝑤∗.



PAC learning with malicious noise

▪ Cannot tolerate 𝜂 >
𝜖

1+𝜖
[Kearns, Li’88]

▪ Can tolerate 𝜂 = 𝑂(𝜖) (in principle)
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Theorem[VC]:

If n = ෨𝑂
d

𝜖2
and w has 

𝜖

2
error on data

then w.h.p.  err w ≤ 𝜖

Minimizing error on noisy data is NP-hard!



PAC learning with malicious noise

▪ Cannot tolerate 𝜂 >
𝜖

1+𝜖
[Kearns, Li’88]

▪ Efficiently: Can tolerate 𝜂 = 𝑂(
𝜖

𝑑
)

▪Proof:

▪Need ∼
𝑑

𝜖
log(1/𝜖) examples to learn in the noise free case.

▪ ℙ 𝑛𝑜 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑖𝑠 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 = 1 − 𝜂
𝑑

𝜖
log(1/𝜖) ≥ 𝑝𝑜𝑙𝑦(𝜖)
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PAC learning with malicious noise

▪ Cannot tolerate 𝜂 >
𝜖

1+𝜖
[Kearns, Li’88]

▪ Efficiently: Can tolerate 𝜂 = 𝑂(
𝜖

𝑑
)
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Open: Improve to 𝜂 =
𝜖

𝑑0.99

[Daniely’16]: Complexity theoretic evidence that
can’t get 𝜂 = 𝑂 𝜖 in poly time for a general distribution.



▪Efficiently: Can tolerate
▪ 𝜂 = 𝑂(

𝜖

𝑑
1
4

) [KKMS’05]

▪𝜂 = 𝑂(
𝜖2

log
𝑑

𝜖

) [KLS’09]

▪𝜂 = 𝑂(𝜖) [ABL’14]
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PAC learning with malicious noise
(D=Uniform Distribution over 𝑆𝑑−1)



▪Efficiently: Can tolerate

▪𝜂 = 𝑂(
𝜖3

log2
𝑑

𝜖

) [KLS’09]

▪𝜂 = 𝑂(𝜖) [ABL’14]
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PAC learning with malicious noise
(D=Isotropic log-concave distribution)



▪ Survey of techniques from [KLS’09, ABL’14]
▪Introduce a margin based technique

▪ Non-malicious noise models

▪ Recent developments
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Rest of the Talk



PAC Learning with malicious noise

▪ Cannot tolerate 𝜂 >
𝜖

1+𝜖
[Kearns, Li’88]

▪ Can tolerate 𝜂 = 𝑂(𝜖) (in principle)

13

Theorem[VC]:

If m = ෨𝑂
d

𝜖2
and w has 

𝜖

2
error on data

then w.h.p.  err w ≤ 𝜖

Minimizing error on noisy data is NP-hard!



Hinge Loss
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𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 = max 0, 1 −
𝑦 𝑤 ⋅ 𝑥

𝜏

𝑦(𝑤 ⋅ 𝑥)𝜏

Loss𝐿ℎ𝑖𝑛𝑔𝑒

𝐿0−1



Candidate Algorithm
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▪ Sample a set 𝑆 of noisy examples.

▪ Output 𝑤 of small hinge loss over 𝑆.
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𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 = max 0, 1 −
𝑦 𝑤 ⋅ 𝑥

𝜏

𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤 , 𝑥, 𝑦 : Expected hinge loss over clean dist. 

Uniform Distribution over 𝑆𝑑−1

෨𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤 , 𝑥, 𝑦 : Empirical hinge loss over noisy samples. 
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𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 = max 0, 1 −
𝑦 𝑤 ⋅ 𝑥

𝜏

Uniform Distribution over 𝑆𝑑−1

With probability ≥ 1 − 𝛿,

∀𝑤, |𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 − ෨𝐸[𝐿ℎ𝑖𝑛𝑔𝑒(𝑤, 𝑥, 𝑦)]| ≤ 𝑂
1

𝜏

𝑑+log
1

𝛿

𝑛
+ 𝜂(1 +

1

𝜏
)
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𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 = max 0, 1 −
𝑦 𝑤 ⋅ 𝑥

𝜏

Pr 𝑤∗ ⋅ 𝑥 ≤ 𝜏 ≤ 𝑂(𝜏 𝑑)

𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤∗, 𝑥, 𝑦 ≤ 𝑂(𝜏 𝑑)

𝑤∗ ⋅ 𝑥 ≤ 𝜏

Uniform Distribution over 𝑆𝑑−1
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𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 ≤ 𝑂(𝜏 𝑑 + 𝜖 + 𝜂(1 +
1

𝜏
))

Set 𝜏 =
𝜖

𝑐 𝑑

Uniform Distribution over 𝑆𝑑−1

𝜂 =
𝜖2

𝑑

If 𝑤 is the minimizer of hinge loss over noisy data, then w.h.p. 
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𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 = max 0, 1 −
𝑦 𝑤 ⋅ 𝑥

𝜏

Uniform Distribution over 𝑆𝑑−1

With probability ≥ 1 − 𝛿,

∀𝑤, |𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 − ෨𝐸[𝐿ℎ𝑖𝑛𝑔𝑒(𝑤, 𝑥, 𝑦)]| ≤ 𝑂
1

𝜏

𝑑+log
1

𝛿

𝑛
+ 𝜂(1 +

1

𝜏
)



[KKMS’05]
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▪ Sample a set 𝑆 of noisy examples.

▪ Remove any pair that is too close to each other

▪ Distance less than 2 − 𝑐
log 𝑛

𝑑

▪ Output 𝑤 of small hinge loss over 𝑆.



[KLS’09]
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▪ Sample a set 𝑆 of noisy examples.

▪ While there exists a direction 𝑢 such that 𝔼𝑆 𝑢. 𝑥 2 >
10 log 𝑛

𝑑

▪ Remove any 𝑥 ∈ 𝑆 such that 𝑢. 𝑥 2 >
10 log 𝑛

𝑑

▪ Output 𝑤 of small hinge loss over 𝑆.
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𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 = max 0, 1 −
𝑦 𝑤 ⋅ 𝑥

𝜏

[KLS’09]

With probability ≥ 1 − 𝛿,

∀𝑤, |𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 − ෨𝐸[𝐿ℎ𝑖𝑛𝑔𝑒(𝑤, 𝑥, 𝑦)]| ≤ 𝑂
1

𝜏

𝑑+log
1

𝛿

𝑛
+ 𝜂(1 +

1

𝜏
) +𝜂 +

1

𝜏

𝜂 log 𝑛

𝑑



[ABL’14]
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▪ Sample a set 𝑆 of noisy examples.

▪ Iteratively do (Outlier removal + hinge loss minimization). 

Idea inspired from the active learning literature.



[ABL’14]
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wk

▪ Suppose we have 𝑤𝑘, s.t. 𝑒𝑟𝑟 𝑤𝑘 ≤ 𝛾
▪ ⇒ 𝜃 𝑤𝑘 , 𝑤

∗ ≤ 𝛾𝜋

𝛾𝜋



[ABL’14]
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▪ Suppose we have 𝑤𝑘, s.t. 𝑒𝑟𝑟 𝑤𝑘 ≤ 𝛾
▪ ⇒ 𝜃 𝑤𝑘 , 𝑤

∗ ≤ 𝛾𝜋
▪ w∗ ⋅ x = wk ⋅ x + w∗ −wk ⋅ x

≤ 𝛾𝜋

wk

𝛾𝜋



[ABL’14]
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▪ Suppose we have 𝑤𝑘, s.t. 𝑒𝑟𝑟 𝑤𝑘 ≤ 𝛾
▪ ⇒ 𝜃 𝑤𝑘 , 𝑤

∗ ≤ 𝛾𝜋
▪ w∗ ⋅ x = wk ⋅ x + w∗ −wk ⋅ x

▪ If 𝑤𝑘 ⋅ 𝑥 > 𝜋𝛾, then 𝑤𝑘 and 𝑤∗ agree 
on the label of 𝑥.

≤ 𝛾𝜋

wk

𝛾𝜋



[ABL’14]
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wk

R

𝑅 = {𝑥: 𝑤𝑘 ⋅ 𝑥 ≤ 𝜋𝛾}

Find 𝑤 ∈ 𝐵(𝑤𝑘 , 𝛾𝜋) of low error w.r.t. 𝐷𝑥∈𝑅

𝛾𝜋



[ABL’14]
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wk

R

▪ Suppose we have 𝑤𝑘, s.t. 𝑒𝑟𝑟 𝑤𝑘 ≤ 𝛾
▪ ⇒ 𝜃 𝑤𝑘 , 𝑤

∗ ≤ 𝛾𝜋

𝑅 = {𝑥: 𝑤𝑘 ⋅ 𝑥 ≤
2𝜋𝛾

𝑑
}

Lemma: If 𝜃 𝑤,𝑤∗ = 𝛾𝜋,

Pr 𝑤∗ ⋅ 𝑥 𝑤 ⋅ 𝑥 < 0, 𝑤 ⋅ 𝑥 >
2𝜋𝛾

𝑑
≤

𝛾𝜋

8



[ABL’14]
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wk

R

𝑅 = {𝑥: 𝑤𝑘 ⋅ 𝑥 ≤
2𝜋𝛾

𝑑
}

Find 𝑤 ∈ 𝐵(𝑤𝑘 ,
2𝛾𝜋

𝑑
) of low error w.r.t. 𝐷𝑥∈𝑅

𝛾𝜋

▪ To improve the error of current 𝑤𝑘 from 

𝛾 to 
𝛾

2
, enough to get error 𝑂(1) w.r.t.

𝐷𝑥∈𝑅. 
▪ At each step solve the above 

subproblem robustly.
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wk

R

𝑅 = {𝑥: 𝑤𝑘 ⋅ 𝑥 ≤
2𝜋𝛾

𝑑
}

Find 𝑤 ∈ 𝐵(𝑤𝑘 ,
2𝛾𝜋

𝑑
) of low error w.r.t. 𝐷𝑥∈𝑅

𝛾𝜋

▪ Noise cannot hurt the hinge loss by a lot: 
𝑤 ⋅ 𝑥 ≤ 2𝜋𝛾.



[ABL’14]
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wk

R

Find 𝑤 ∈ 𝐵(𝑤𝑘 ,
2𝛾𝜋

𝑑
) of low error w.r.t. 𝐷𝑥∈𝑅

𝛾𝜋

▪ Can do better outlier removal

∀𝑤 ∈ 𝐵 𝑤𝑘 ,
2𝛾𝜋

𝑑
, 𝐸𝐷𝑥∈𝑅 𝑤 ⋅ 𝑥 2 ≤ 𝑂(

𝛾2

𝑑
)

𝑅 = {𝑥: 𝑤𝑘 ⋅ 𝑥 ≤
2𝜋𝛾

𝑑
}
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𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 = max 0, 1 −
𝑦 𝑤 ⋅ 𝑥

𝜏

[ABL’14]

With probability ≥ 1 − 𝛿,

∀𝑤, |𝐸 𝐿ℎ𝑖𝑛𝑔𝑒 𝑤, 𝑥, 𝑦 − ෨𝐸[𝐿ℎ𝑖𝑛𝑔𝑒(𝑤, 𝑥, 𝑦)]| ≤ 𝑂
1

𝜏

𝑑+log
1

𝛿

𝑛
+ 𝜂(1 +

1

𝜏
) +𝜂 +

1

𝜏

𝜂𝛾

𝑑

wk

R
𝛾𝜋



[ABL’14]
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Initialize 𝑤1 randomly.

Iterate k = 2,3,… , log(
1

𝜖
)

▪ Sample 𝑚𝑘 examples 𝑥 satisfying 𝑤𝑘−1 ⋅ 𝑥 ≤
2𝜋𝛾𝑘−1

𝑑

label them and add them to S.

▪ Do soft outlier removal.

▪ Find 𝑤𝑘 in 𝐵(𝑤𝑘−1, 2𝜋𝛾𝑘−1) of small hinge loss.

▪ Clear working set 𝑆.

end iterate

▪ Need constant error in each round, hence 𝑂 𝑑 labeled examples

▪ Total # labeled examples = 𝑂(𝑑𝑙𝑜𝑔(
1

𝜖
))



▪ 𝜂 = 𝑂(
𝜖

𝑑
1
4

) [KKMS’05]

▪ 𝜂 = 𝑂(
𝜖2

log
𝑑

𝜖

) [KLS’09]

▪ 𝜂 = 𝑂(𝜖) [ABL’14]

▪ 𝜂 =
𝜖

2+𝛿
if only noise in labels [Daniely’15]

▪ by combining margin based technique with polynomial regression.

▪ Extend margin based learning to robustly learn a broader class of distributions [BZ’17].

▪ Robust learning of non-linear models [DKS’18].
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PAC learning with malicious noise
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PAC learning with (non)malicious noise

Malicious NoiseRandom Classification 
Noise

Each label flipped w.p.
1

2
− 𝛽

Can learn halfspaces efficiently with 

O
𝑑

𝜖2𝛽2
samples[BFKV’98].

Intermediate Noise 
models?



Bounded (Massart) Noise
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𝑝𝑥 = 𝑃(𝑦 ≠ 𝑠𝑖𝑔𝑛(𝑤∗ ⋅ 𝑥)|𝑥) ≤
1

2
− 𝛽,

0 ≤ 𝛽 ≤
1

2

▪ Can learn with 𝑂(
𝑑

𝜖2𝛽2
) samples in exponential time.

▪ Current complexity theoretic reductions do not work in this model.

▪ [ABHZ’16]: Can learn under isotropic log-concave distributions in polynomial time for 
any constant 𝛽.
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▪ [CLZ’17]: Practical algorithms based on SGD.

▪ [YZ’17, Zhang’18]: Practical algorithms based on (margin + perceptron). Also label efficient.

▪ Guarantees hold for uniform distribution. Can handle 𝛽 arbitrarily close to zero.

▪ Open: fast algorithms for isotropic log-concave distributions?

▪ Open: polynomial time algorithms for Massart noise beyond log-concave?

Bounded (Massart) Noise

𝑝𝑥 = 𝑃(𝑦 ≠ 𝑠𝑖𝑔𝑛(𝑤∗ ⋅ 𝑥)|𝑥) ≤
1

2
− 𝛽,

0 ≤ 𝛽 ≤
1

2



Tsybakov Noise
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∀𝑡 > 0, ℙ𝑋 𝑝𝑥 −
1

2
< 𝑡 ≤ 𝐵𝑡𝛼

▪ Can achieve rates ∼
𝑑 log 𝑛+log

1

𝛿

𝑛

1+𝛼

2+𝛼

▪Open: a polynomial time PAC learning algorithm?



Recap of Open Questions

▪ PAC learn halfspaces under malicious noise with 𝜂 =
𝜖

𝑑0.99
?

▪ Show that SGD based algorithms work for Massart noise beyond 
the uniform distribution?

▪ Design polynomial time learning algorithms for Massart noise for 
a broad class of distributions?

▪ Design polynomial time algorithm for Tsybakov noise in any non-
trivial setting?

▪ Explore intermediate noise models for PAC learning?
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THANK YOU
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