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Plan

* Survey of techniques used in robust PAC learning of
halfspaces.

* Recent developments and open problems.




PAC learning of halfspaces

Given measurements (x,y = sign(w” - x)) v
approximately recover w*. o \t\i/ ++ +
- - <+ F
* How is x generated? BN
* x ~ D, where D is an arbitrary distribution
over R?



PAC learning of halfspaces

Given measurements (x,y = sign(w™ - x)) v
. - ‘\ + +
approximately recover w*. ) \\J/ A
- - <+ F
. . - N
 What is approximate recovery? _ N

* Input: (xq,v1), (X2, V2,), ... (X, V) generated i.i.d. from D.
e Output: h: R% - {£1} such that Pll‘)(h(x) * sign(w” -x)) <E€
x~

* Want runtime poly(n) and n = 6(%)



PAC learning of halfspaces

Constraints

(x1;+) W'x1 > O
(x5,—) w-x, <0

(X, +) w-x, >0

Theorem|[V(]
Ifn = 5(?), then w.h.p. err(w) < €




PAC learning with malicious noise

Given corrupted measurements (x, sign(w” - x)) | \"Y

: 4+
approximately recover w*. . / +,

* |In each draw
* (x,sign(w*-x)), wherex ~D  w.p.1—7
* Arbitrary (x,y) W.p. 1]

= How much noise 1(€) can be tolerated?



PAC learning with malicious noise

= Cannot tolerate n > i [Kearns, Li’88]

= Can toleraten = 0 (¢€) (in principle)

Theorem[VC]:
~(d €
Ifn=20 (—2) and w has - error on data
€ 2

then w.h.p. err(w) <€

Minimizing error on noisy data is NP-hard!



PAC learning with malicious noise

= Cannot tolerate n > 1%6 [Kearns, Li’88]
= Efficiently: Can tolerate n = 0(2)

=Proof:

d : :
"Need ~ ;log(l/e) examples to learn in the noise free case.

d
= P(no example is corrupted) = (1 — n)?log(l/ €) > poly(€)



PAC learning with malicious noise

= Cannot tolerate n > i [Kearns, Li’88]
= Efficiently: Can tolerate n = 0(2)

[Daniely’16]: Complexity theoretic evidence that
can’t getn = 0(¢€) in poly time for a general distribution.

Open: Improve ton = doe_gg




PAC learning with malicious noise
(D=Uniform Distribution over S;_4)

-Efficiently Can tolerate
"y = 0( ) [KKMS’05]

") = 0( ( )) [KLS'09]
"1 = 0(€) [ABL'14]



PAC learning with malicious noise
(D=Isotropic log-concave distribution)

-Efficiently Can tolerate
") = 0( ( )) [KLS'09]

" = O(E) [ABL'14]




Rest of the Talk
= Survey of techniques from [KLS’09, ABL'14]

"|ntroduce a margin based technique

® Non-malicious noise models

= Recent developments



PAC Learning with malicious noise

= Cannot tolerate n > i [Kearns, Li’88]
= Can toleraten = 0 (¢€) (in principle)

Theorem|[V(C]:

Ifm=0 ( ) and w has error on data

then w.h.p. err(w) <€

Minimizing error on noisy data is NP-hard!



Hinge Loss

1 LOSS

| -
“hinge

y(w - x)) Lo_q

Lhinge (w,x,y) = max <0, 1 — .

T y(w - x)




Candidate Algorithm

= Sample a set S of noisy examples.

= Qutput w of small hinge loss over S.




Uniform Distribution over S4_1

y(w - x)>

Lpinge(w,x,y) = max (O, 1 — .

E[Lhinge (W , X, y)] : Expected hinge loss over clean dist.

E[Lhinge(w , X, y)] : Empirical hinge loss over noisy samples.



Uniform Distribution over S4_1

y(w - x)>

Lpinge(w,x,y) = max (O, 1 — .

With probability > 1 — §,

n

YW, |E[LningeW, %, 3)] = E[Lpinge W, x, ]| < 0 (i d“"g(@)) +n(1+3)



Uniform Distribution over S4_1

- X
Lpinge(w,x,y) = max (O, 1 — yiw )>
T W*
Pr[|w* - x| < 1] < 0(z Vd)
E[Lhinge(W*;x» 3’)] = O(T\/E)
lw* - x| <t



Uniform Distribution over S4_1

If w is the minimizer of hinge loss over noisy data, then w.h.p.

E[Lhingew,x,9)] < 0Vd + € + n(1 + %)) W

62

€ —_———
Setr—m ) n—\/a




Uniform Distribution over S4_1

y(w - x)>

Lpinge(w,x,y) = max (O, 1 — .

With probability > 1 — §,

n

YW, |E[LningeW, %, 3)] = E[Lpinge W, x, ]| < 0 (i d“"g(@)) +n(1+3)



[KKMS'05]

= Sample a set S of noisy examples.
= Remove any pair that is too close to each other

logn
d

= Distance less than \/2 —C

= Qutput w of small hinge loss over S.



[KLS"O9]

= Sample a set S of noisy examples.

' : ot 101
= While there exists a direction u such that Eg[(u.x)*] > —;g"

10logn

= Remove any x € S such that (u.x)? > >

= Qutput w of small hinge loss over S.



[KLS"O9]

y(w - x)>

Lpinge(w,x,y) = max (O, 1 — .

=

With probability > 1 — §,

/d+log 1 [n logn
Vw, |E[Lhmge(W X, y)] Lhmge(W x,y)]<0 W‘TI + -

=



[ABL'14]

= Sample a set S of noisy examples.
= |teratively do (Outlier removal + hinge loss minimization).

Idea inspired from the active learning literature.



[ABL'14]

= Suppose we have wy, s.t.err(wy) <y .
= = 0wy, w*) <ym




[ABL'14]

= Suppose we have wy, s.t.err(wy) <y .
= = 0wy, w*) <ym

" wex=wp X+ (W —wy) - X
L |
[

<ym



[ABL'14]

= Suppose we have wy, s.t.err(wy) <y .
= O(wy,w") <ym
" wex=wp X+ (W —wy) - X

<ym

= If l[wy - x| > my, then wy, and w* agree
on the label of x.



[ABL'14]

Find w € B(wy, ym) of low error w.r.t. D,.cp

R = {x:|wy - x| < my}




[ABL'14]

= Suppose we have wy, s.t.err(wy) <y
= = 0wy, w*) <ym

Lemma: If 6(w,w*) = ym,

* : : 2nyl ~Ym R
Pr[(w x)(w-x) <0,|w x|>\/H =<
R = | . |<ﬂ
= {x: |wy x_\/a}



[ABL'14]

2ym

Find w € B(wy, 75

) of low error w.r.t. D,.cp .

= To improve the error of current wj, from
y to g, enough to get error O(1) w.r.t. 7

Dy er-
= At each step solve the above

subproblem robustly. R = (x: |wy - x| < 27ﬂ/}
o . k . ~ ——

)



[ABL'14]

Find w € B(wy, 2yn) of low error w.r.t. D,.cp .
= Noise cannot hurt the hinge loss by a lot:
lw - x| < 2my.
R
= {x:|wy, - x| < 213
\/_



[ABL'14]

2ym

Find w € B(Wk, ) of low error w.r.t. D,.cp

= Can do better outlier removal

2
VYw € B (Wk,%);EDxeR[(W - x)?] < 0(%)




[ABL'14]

y(w - x))

Lpinge(w,x,y) = max (0, 1 — .

With probability > 1 — §,

1 d+10g 1
vw, |E[Lhmge(w X, y)] Lhmge(W x, ] <0 (; ’ ) )J/"‘/lﬂ-n +; %




[ABL'14]

Initialize w; randomly.
Iterate k = 2,3, ...,log(i)

. . 2TTY | —
= Sample m; examples x satisfying |[wj_; - x| < Vé .

= Need constant error in each round, hence 0(d)labeled examples
= Total # labeled examples = O(dlog(i))

" Find wy, in B(Wy_q, 21y —1) of small hinge loss.
= Clear working set S.



PAC learning with malicious noise

" = 0( ) [KKMS’05]

2

"y = 0( ())[KLSO9]

=71 = 0(€) [ABL'14]

E . . .
"= if only noise in labels [Daniely’15]

= by combining margin based technique with polynomial regression.

" Extend margin based learning to robustly learn a broader class of distributions [Bz’17].

= Robust learning of non-linear models [Dks18].



PAC learning with (non)malicious noise

Random Classification Malicious Noise
Noise

Intermediate Noise
models?

Each label flipped w.p. % - f

Can learn halfspaces efficiently with

samples[BFKV’98].




Bounded (Massart) Noise

o 1
pe = P(y # sign(w’ - 2)|x) <5 = B,

1
0<p <=
B 2
d
6232
= Current complexity theoretic reductions do not work in this model.

= Can learn with O(

) samples in exponential time.

= [ABHZ’16]: Can learn under isotropic log-concave distributions in polynomial time for
any constant 3.



Bounded (Massart) Noise

. ) 1
px = P(y # sign(w" - 2)l0) <5 — B,
0<B< 1
<p < >
= [CLz’17]: Practical algorithms based on SGD.
" [Yz’'17, Zhang’18): Practical algorithms based on (margin + perceptron). Also label efficient.
= Guarantees hold for uniform distribution. Can handle [ arbitrarily close to zero.

= Open: fast algorithms for isotropic log-concave distributions?

= Open: polynomial time algorithms for Massart noise beyond log-concave?



Tsybakov Noise

1
Vt>0,IPX(px—§ <t>SBt“

1ta
d log n+log(%))2+“
n

= Can achieve rates ~ (

=0pen: a polynomial time PAC learning algorithm?



Recap of Open Questions

€ »
4099 °

= PAC learn halfspaces under malicious noise withn =

= Show that SGD based algorithms work for Massart noise beyond
the uniform distribution?

= Design polynomial time learning algorithms for Massart noise for
a broad class of distributions?

= Design polynomial time algorithm for Tsybakov noise in any non-
trivial setting?

= Explore intermediate noise models for PAC learning?
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