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Data Driven Algorithm Selection

Some domains we have polynomial time optimal algorithms:

- E.g., sorting, searching, shortest paths...
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Some domains we don't:
- Different methods work better in different settings.

- Large family of methods - what's best in our application?
- E.g., data clustering, partitioning problems, auction design, ...
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L Use ML to automate algo design in difficult domains.



Data Driven Algorithm Selection

o
/54 Use ML fo automate algo design in difficult domains.
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* Large body of empirical work.

« AT community: E.g., [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]
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« Computational Biology: E.g., [DeBlasio-Kececioglu, 2018] P
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« Game Theory: E.qg., [Likhodedov and Sandholm, 2004]

+  This talk: formal guarantees for this approach.



Algorithm Selection as a Learning Problem

Goal: given large family of algos, sample of typical instances from domain,
find an algo that performs well on new instances from same domain.
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Sample Complexity of Algorithm Selection

Goal: given large family of algos, sample of typical instances from domain,
find an algo that performs well on new instances from same domain.

Approach: ERM, find the algo that performs best over our sample.

K tion: When d neralize?
ey Questio en do /we generalize ., p
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Sample Complexity: How large should our sample of typical instances be
in order to guarantee good performance on new instances?



Data Driven Algorithm Selection

Goal: widely applicable techniques for analyzing the intrinsic
complexity of families of algos and ensuring good generalizability.

Also design an efficient meta-algorithm.

Natural Idea: apply tools from learning theory.

m = 0(dim(F) /€*) instances suffice to ensure generalizability

Challenge: analyze dim(F), due to combinatorial & modular nature,
"nearby"” programs/algos can have drastically different behavior.
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Our work

Classic machine
learning



Formal Guarantees for Algorithm Selection

Prior Work:

[Gupta-Roughgarden, ITCS 2016 & STCOMP 2017]: proposed learning
theoretic model for analyzing algorithm selection; analyzed greedy
procedures for subset selection problems (knapsack & independent set).



Formal Guarantees for Algorithm Selection

« Our Work: Distributional settings, new algo classes applicable for
a wide range of problems.

[Balcan-Nagarajan-Vitercik-White, COLT 2017]

 Clustering: Linkage + Dynamic Programming

[ CLUSTERING |

 Partitioning pbs via IQPs

SDP + Rounding — Sy

Semidefinite Programming
Relaxation (SDP)

E.g., Max-Cut, NS _.
Max-2SAT, Cor‘r‘ela’rlon Cius‘rermg
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[Balcan-Dick-Sandholm-Vitercik, ICML 2018]

Formal Guarantees for Algorithm Selection

« Our Work: Distributional settings, new algo classes applicable for

a wide range of problems.

Branch and Bound Techniques for solving MIPs
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Formal Guarantees for Algorithm Selection

« Our Work: Distributional settings, new algo classes applicable for
a wide range of problems.

[Balcan-Nagarajan-Vitercik-White, COLT 2017]
[Balcan-Dick-Sandholm-Vitercik, ICML 2018]

Related Work: guarantees for automated mechanism design in
distributional settings. [Balcan-Sandholm-Vitercik, EC 2018]

[Balcan-Sandholm-Vitercik, Tutorial ICML 2018]

« Recent Work: General results for private and online algorithm selection.

[Balcan-Dick-Vitercik, FOCS 2018]



Clustering

Problem: Given a S set of n objects (news
articles, customer surveys, web pages, ...),
organize into natural groups.

- E.g., objective based clustering .
- k-median: find centers {c;, c;, ..., cx} to min X, mind(p, ¢;)
- k-means: find centers {c;, c,, ..., cx} to min ¥, min d?*(p, ¢;) .
- k-center: find centers to minimize the maximum radius.

+  Finding OPT is NP-hard, so no universal efficient algo that works
on all domains.



Clustering: Linkage + Dynamic Programming
Family of poly time 2-stage algorithms:

1. Use a greedy linkage-based algorithm to organize data into a
hierarchy (tree) of clusters.

2. Dynamic programming over this tree to identify pruning of
tree corresponding to the best clustering.




Clustering: Linkage + Dynamic Programming
1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best prunning.

Both steps can be done efficiently.

CLUSTERING




Linkage Procedures for Hierarchical Clus’rer'ing

Bottom-Up (agglomerative)

Start with every point in its own cluster.

Repeatedly merge the "closest” two
clusters.

Different defs of "closest” give different algorithms.



Linkage Procedures for Hierarchical Clustering

Have a distance measure on pairs of objects. @
d(x,y) - distance between x and y CORNGCD
E.g., # keywords in common, edit distance, etc Gemd) Coucd)

« Single linkage: dist(A, B) = ef«m%B dist(x,x")

« Complete linkage: dist(A,B) = max dist(x,x")

« Average linkage: dist(A,B) = avg dist(x,x’)

xeA,x'eB’

* a-weighted linkage:

dist(A,B) = @ min dist(x,x’) + (1 —a) max_ dist(x,x")
x€Ax'EB’ XEA X' EB/



Clustering: Linkage + Dynamic Programming
1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best prunning.

k-meang] | k-medi

CLUSTERING
« Used in practice.
E.g., [Filippova-Gadani-Kingsford, BMC Informatics] JRULLAED ., .-,
. ': ; G+ -““ .0' X a 0:.
* Strong properties. e a S reraneet :
E.g., best known algos for perturbation resilient ™, (S e
instances for k-median, k-means, k-center. RELTPTEL T, R T O

[Balcan-Liang, STCOMP 2016]  [Awasthi-Blum-Sheffet, IPL 2011]
[Angelidakis-Makarychev-Makarychev, STOC 2017]

PR: small changes to input distances shouldn't move optimal solution by much.


http://images.google.com/imgres?imgurl=http://images.nymag.com/news/features/newface080811_lede_560.jpg&imgrefurl=http://nymag.com/news/features/48948/&usg=__cimnczuBny94AVQhDb04KyNUIm4=&h=482&w=560&sz=50&hl=en&start=11&sig2=4wGA_vH60nBqlHqvekl3lA&zoom=1&itbs=1&tbnid=gg1XN95D7aTn3M:&tbnh=114&tbnw=133&prev=/images?q=face&hl=en&gbv=2&tbs=isch:1&ei=dMtyTbuKL8OqlAecwcFN
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.teachenglishinasia.net/files/u2/purple_lotus_flower.jpg&imgrefurl=http://www.teachenglishinasia.net/asiablog/asian-water-lilies-and-lotus-flowers&usg=__jQMsElfDOQGWm-hebjVtJDqL-40=&h=335&w=500&sz=28&hl=en&start=3&sig2=hmb0FR5kLCXdU2BdwjCNcA&zoom=1&itbs=1&tbnid=r_JpUcIxETAUoM:&tbnh=87&tbnw=130&prev=/images?q=flower&hl=en&gbv=2&tbs=isch:1&ei=Is1yTcKaOcGAlAe0wqGmAQ
http://images.google.com/imgres?imgurl=http://www.dynamicdrive.com/dynamicindex4/lightbox2/flower.jpg&imgrefurl=http://www.dynamicdrive.com/dynamicindex4/lightbox2/index.htm&usg=__6G24ltZqq0UGAerNdiENN4jOqqQ=&h=509&w=500&sz=46&hl=en&start=4&sig2=P_pNfXebhTzd8n0DrpgNhw&zoom=1&itbs=1&tbnid=--IQZoA0t4jdOM:&tbnh=131&tbnw=129&prev=/images?q=images&hl=en&sa=X&gbv=2&tbas=0&tbs=isch:1&ei=n8hyTej5N8X_lgffrdVF
http://images.google.com/imgres?imgurl=http://www.treehugger.com/ec-rnd-005.jpg&imgrefurl=http://www.treehugger.com/files/2008/07/17-electric-cars-overview-2005-to-2008.php&usg=__4G2QjNYXIHEYVXE6DoqIE5zzzrY=&h=322&w=468&sz=40&hl=en&start=9&sig2=P7jmw1vmKb715x8CELHezQ&zoom=1&itbs=1&tbnid=iGci7mkzT2KN2M:&tbnh=88&tbnw=128&prev=/images?q=car&hl=en&gbv=2&tbs=isch:1&ei=qMtyTcilGIOClAey9IGqCw

Clustering: Linkage + Dynamic Programming

Our Results: a-weighted linkage+DP

Pseudo-dimension is O(log n),
so small sample complexity. [CLUSTERING ]

Given sample S, find best algo from this family in poly time.

Input L: . ni & I:I
8% g~ - Iﬁ: = =]
= i = D

Key Technical Challenge: small changes to the parameters of the algo

can lead to radical changes in the tree or clustering produced.
|

- |

Problem: a single change to an early decision by the linkage algorithm
can snowball and produce large changes later on.



Clustering: Linkage + Dynamic Programming

Our Results: a-weighted linkage+DP

Pseudo-dimension is O(log n),
so small sample complexity. [CLUSTERING ]

Key idea:

e Break real line into a small number of intervals s.t. on each instance:
: | | )

& &

« Two a's from one interval result in the same tree.

a ER € I | |

« And therefore the same clustering.

* And therefore the same performance cost.



Clustering: Linkage + Dynamic Programming
Our Results: a-weighted linkage+DP

Pseudo-dimension is O(log h), so small sample complexity.

Key idea:
* Break real line into intervals s.t. on each instance same performance.
a € R € : : : I I : I I >

* For a clustering instance of n points, 0(n®) intervals.

« Over any «a interval, so long as order in which all pairs of nodes are merged
is fixed, then resulting tree is invariant.

* Which will merge first, @—@ @_@
N; and WV, or N; and IV, ? o o , ,

« Depends on which of (1-a)d(,q) + ad(@',q") Or (1 —a)d(r,s) + ad(r,s") is smaller.

* Any interval boundary must be an equality for some such set of 8 points, so
0(n®) interval boundaries. Order of merges is fixed between any two
adjacent interval boundaries.



Clustering: Linkage + Dynamic Programming
Our Results: a-weighted linkage+DP
Pseudo-dimension is O(log h), so small sample complexity.

Key idea:

* Break real line into intervals s.t. on each instance same performance.

 For m clustering instances of n points, O(mn®) intervals.

aeR€ ,E,_.k : E >
F N AR
7. h

So, pseudo-dim is O(log n).



Clustering: Linkage + Dynamic Programming

Our Results: a-weighted linkage+DP

Pseudo-dimension is O(log n).

[ CLUSTERING |

For m = O(logn /€?), w.h.p. expected performance cost of best « over
the sample is e-close to optimal over the distribution

Tnput 1: - Input 2: & Input m:
i ] [ -

EE o= I:I

PE i E;
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Given sample S, can find best algo from this family in poly time.
Algorithm (high level)

 Solve for all a intervals over the sample

a€eR ¢—t—t—+———+——

* Find the a interval with the smallest empirical cost



Partitioning Problems via IQPs

IQP formulation

Max xT Ax = Zi,j i jXiX;
st.xe{-11}"

E.g., max-cut

Max X jyeE Wij (ﬂ)

2
s.t. Vi € {—1,1}

Many of these problems are NP-hard.



Partitioning Problems via IQPs

IQP formulation
Max xTAx = Zi,j Qi jXiXj
st. xe{—-11}"

Algorithmic Approach: SDP + Rounding

1. SDP relaxation:
Associate each binary variable x; with a vector u;.

Max Zi,j ai,j(ui,uj) 1
subject tolly;|l =1
2.Rounding procedure [soemans and Williamson '95]

« Choose a random hyperplane.

« (Deterministic thresholding.) Set x; to -1 or 1 based on
which side of the hyperplane the vector u; falls on.



Parametrized family of rounding procedures

IQP formulation
Max xTAx = Zi,j Qi jXiXj
st. xe{—-11}"

Algorithmic Approach: SDP + Rounding
1. SDP relaxation:
Associate each binary variable x; with a vector u;.

N\Clx Zi‘jai’j(ui,uﬂ
subject tollu;|| =1

ui ’v
Inside margin,
randomly round

2. s-Linear Rounding [Feige&Landberg06]

« Choose a random hyperplane.

« Random thresholding outside margin,

dto -1
Set x; to 1w.p =+ ¢s((u;, 2)) and -1 w.p 5 — = s (1, 2)) rodnate

@s(x)

X

3

X
Ps(x) = —1yc_s + S : 1x€[—s,s] + Lyss



Parametrized family of rounding procedures

IQP formulation
Max xTAx = Zi,j Qi jXiXj
st. xe{—-11}"

Algorithmic Approach: SDP + Rounding

1. SDP relaxation:
Associate each binary variable x; with a vector u;.

Max 2, ai, i, o) o e
subject tollu;|| =1

Semidefinite Programming
Relaxation (SDP)

2. s-Linear Rounding [Feige&Landberg06]

ew .. | llinear | . s-linegr'
* Choose a random hyperplane. rounding roundy ounding
. Random ThreShOlding | Feasible solution to IQP |

Set x; to 1w.p >+ @5 ((u;, Z))

and -1 w.p % — %gos((ui,l))



Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is O(log h), so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic
in % with n boundaries.

IQP
objective
value L~
N—— \_
S

Given sample S, can find best algo from this family in poly time.

+ Solve for all ¢ intervals over the sample, find best parameter
over each interval, output the best parameter overall.



Online Algorithm Selection

So far, batch setting: collection of typical instances given upfront.

[Balcan-Dick-Vitercik, FOCS 2018] online and private alg. selection.

Scoring functions non-convex, with lots of discontinuities, cannot
use known techniques. They are piecewise Lipschitz.

Online optimization with Piecewise Lipschitz functions.

Identify a general structural property
called dispersion that allows us to get </
good regret bounds and show this ~

property holds for many alg. selection 4
problems. N NN

Lipschitz within each
piece




Recent Work: Online Algorithm Selection

Recent Work: [Balcan-Dick-Vitercik, FOCS 2018]

Online optimization

On each round t € {1, ..., T}

1. The online learning algorithm chooses a parameter p,

2. The adversary chooses a piecewise Lipschitz function u: € - [0, H]
(corresponds to some problem instance and its induced scoring function)
Receive the score of the parameter we selected u.(py).

3. Full information: Algorithm observes the function u.(-)

4. Bandit feedback: Algorithm only receives payout u.(p,).

Goal: minimize regreft: rgle'clg(ZtTﬂ ue(p) — E[ X, ue(py)]

T Our cumulative
Performance of best performance

parameter in hindsight



Dispersion, Sufficient Condition for No-Regret

Piecewise Lipschitz Not disperse
function y,
\/'\ A
/;‘/ RN
L1 IW/I L1 A_
VR A
\/ Many boundaries within interval
/
Disperse
SN P
1 I /
Lipschitz within each S \/\ d
piece —hl—l—'Il—' N
A
Few boundaries within any
interval

{u1 (), ...,ur()} is (w, k)-dispersed if any ball of radius w contains
boundaries for at most k of the u;.



Full information: exponentially weighted forecaster

Full information: exponentially weighted forecaster [Cesa-Bianchi and Lugosi 2006]
On each round t e {1, ..., T}

« Sample a vector p, fr'om a distribution P | where
pe(p) < exp 7\2 us(p)
Our Results:

If Y u.(-) piecewise L-Lipschitz, {u;(*),...,ur(-)} is (w, k)-dispersed.

The expected regret is O (H( /leogv—lv + k) + TLw).

Usual VT bound, but lose a log(1/w) multiplicative term, and an additive kH
term [for the k discontinuities that might be inside a ball of radius w around the optimal
solution]and an additive TLw for the Lipschitz constant.



Full information: exponentially weighted forecaster

If Y. u.(-) piecewise L-Lipschitz, {u;(),...,ur()} is (w, k)-dispersed.

The expected regret is O (H( /leog% + k) + TLw).

For most problems:

Setw= 1//T

Get k = VT x (some function of problem)

Overall, get regret O(HVTd).



Example: rounding of SDP relaxation of IQP

Idea:

Exploit randomness of algorithm to give a guarantee on
dispersion.

Prove that whp, for any a > % the set of u; are

(To‘_l, O(nT%,/log n))-disper‘sed

Lipschitz value depends on which class of rounding schemes.

« Setting a = % leads to regret of O(HnV/T).



Discussion

Strong performance guarantees for data driven algorithm selection
for combinatorial problems.

Exploit structure to provide good sample complexity and regret
bounds. Also privacy guarantees.

From a learning theory point of view, techniques of independent
interest beyond algorithm configuration.

Related in spirit to Hyperparameter tuning, AutoML, Metalearning.

Future Work: use our insights to analyze problems commonly studied
in these settings (e.g., tuning hyper-parameters in deep nets)






