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Data Driven Algorithm Selection

Some domains we have polynomial time optimal algorithms:

Some domains we don’t:

- E.g., sorting, searching, shortest paths…

- Different methods work better in different settings.

- Large family of methods – what’s best in our application?

- E.g., data clustering, partitioning problems, auction design, …

Use ML to automate algo design in difficult domains.



• Large body of empirical work.

• This talk: formal guarantees for this approach.

Data Driven Algorithm Selection

• AI community: E.g., [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]

Use ML to automate algo design in difficult domains.

• Computational Biology: E.g., [DeBlasio-Kececioglu, 2018]

• Game Theory: E.g., [Likhodedov and Sandholm, 2004]



Algorithm Selection as a Learning Problem

Goal: given large family of algos, sample of typical instances from domain, 
find an algo that performs well on new instances from same domain.

Large family 𝐅 of algorithms

Sample of typical inputs

Facility 
location:

Clustering: Input 1: Input 2: Input m:

Input 1: Input 2: Input m:

Input 1: Input 2: Input m:

…

…

…

MST

Greedy 

Dynamic Programming

…

+

+ Farthest Location



Sample Complexity of Algorithm Selection

Approach: ERM, find the algo that performs best over our sample.  

New:

Key Question: When do we generalize?

Seen:
…

Sample Complexity: How large should our sample of typical instances be 
in order to guarantee good performance on new instances?

Goal: given large family of algos, sample of typical instances from domain, 
find an algo that performs well on new instances from same domain.



Data Driven Algorithm Selection

Challenge: analyze dim(F), due to combinatorial & modular nature, 
“nearby” programs/algos can have drastically different behavior.
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Classic machine 
learning

Our work

Natural Idea: apply tools from learning theory.

m = O dim F /ϵ2 instances suffice to ensure generalizability

Goal: widely applicable techniques for analyzing the intrinsic 
complexity of families of algos and ensuring good generalizability.

Also design an efficient meta-algorithm.



Formal Guarantees for Algorithm Selection

Prior Work:

[Gupta-Roughgarden, ITCS 2016 & SICOMP 2017]: proposed learning 
theoretic model for analyzing algorithm selection; analyzed greedy 
procedures for subset selection problems (knapsack & independent set).



Formal Guarantees for Algorithm Selection

Single 
linkage

Complete
linkage 𝛼 −Weighted comb …

Ward’s algo

DATA

DP for 
k-means
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k-median
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k-center

CLUSTERING

Semidefinite Programming 
Relaxation (SDP)

Integer Quadratic 
Programming (IQP)

GW 
rounding

1-linear 
roundig

s-linear 
rounding

Feasible solution to IQP

… … …

E.g., Max-Cut, 

• Clustering: Linkage + Dynamic Programming

• Partitioning pbs via IQPs: 
SDP + Rounding

• Our Work: Distributional settings, new algo classes applicable for 
a wide range of problems.

Max-2SAT, Correlation Clustering

[Balcan-Nagarajan-Vitercik-White, COLT 2017]



Formal Guarantees for Algorithm Selection

• Branch and Bound Techniques for solving MIPs

[Balcan-Dick-Sandholm-Vitercik, ICML 2018] 

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 = 𝒃

𝑥𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼
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• Our Work: Distributional settings, new algo classes applicable for 
a wide range of problems.



Formal Guarantees for Algorithm Selection

• Recent Work: General results for private and online algorithm selection.

[Balcan-Dick-Vitercik, FOCS 2018] 

• Our Work: Distributional settings, new algo classes applicable for 
a wide range of problems.

• Related Work: guarantees for automated mechanism design in 
distributional settings. [Balcan-Sandholm-Vitercik, EC 2018]

[Balcan-Nagarajan-Vitercik-White, COLT 2017]

[Balcan-Dick-Sandholm-Vitercik, ICML 2018] 

[Balcan-Sandholm-Vitercik, Tutorial ICML 2018]



Clustering

Problem: Given a S set of n objects (news 
articles, customer surveys, web pages, …), 
organize into natural groups.

• E.g., objective based clustering
– 𝑘-median: find centers {𝑐1, 𝑐2, … , 𝑐𝑘} to min σ𝑝min𝑑(𝑝, 𝑐𝑖)

– 𝑘-means: find centers {𝑐1, 𝑐2, … , 𝑐𝑘} to min σ𝑝min𝑑
2(𝑝, 𝑐𝑖)

– k-center: find centers to minimize the maximum radius.

zx

y
c1 c2

s c3

• Finding OPT is NP-hard, so no universal efficient algo that works 
on all domains.  



Clustering: Linkage + Dynamic Programming

Family of poly time 2-stage algorithms:

1. Use a greedy linkage-based algorithm to organize data into a 
hierarchy (tree) of clusters.

2. Dynamic programming over this tree to identify pruning of 
tree corresponding to the best clustering.

A B C D E F

A B D E

A B C DEF

A B C D E F

A B C D E F

A B D E

A B C DEF

A B C D E F



Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best prunning.

Single 
linkage

Complete
linkage

𝛼 −Weighted 
comb 

… Ward’s 
algo

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING

Both steps can be done efficiently.



Linkage Procedures for Hierarchical Clustering

Bottom-Up (agglomerative)

soccer

sports fashion

Guccitennis Lacoste

All topics

• Start with every point in its own cluster.

• Repeatedly merge the “closest” two 
clusters.

Different defs of “closest” give different algorithms.



Linkage Procedures for Hierarchical Clustering

Have a distance measure on pairs of objects.

d(x,y) – distance between x and y

E.g., # keywords in common, edit distance, etc soccer

sports fashion

Guccitennis Lacoste 

All topics

• Single linkage: dist A, 𝐵 = min
x∈A,x′∈B′

dist(x, x′)

dist A, B = avg
x∈A,x′∈B′

dist(x, x′)• Average linkage:

• Complete linkage: dist A, B = max
x∈A,x′∈B′

dist(x, x′)

• 𝛼-weighted linkage:

dist A, B = 𝛼 min
x∈A,x′∈B′

dist(x, x′) + (1 − 𝛼) max
x∈A,x′∈B′

dist(x, x′)



Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best prunning.

Single 
linkage

Complete
linkage

𝛼 −Weighted 
comb 

… Ward’s 
algo

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING

• Used in practice. 

• Strong properties. 

PR: small changes to input distances shouldn’t move optimal solution by much.

[Balcan-Liang, SICOMP 2016] [Awasthi-Blum-Sheffet, IPL 2011]

[Angelidakis-Makarychev-Makarychev, STOC 2017]

0.7

E.g., [Filippova-Gadani-Kingsford, BMC Informatics]

E.g., best known algos for perturbation resilient 
instances for k-median, k-means, k-center.
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Clustering: Linkage + Dynamic Programming

Our Results: 𝛼-weighted linkage+DP

• Given sample S, find best algo from this family in poly time.

Input 1:
Input 2: Input m:

Single 
linkage

Complete
linkage

𝛼 −Weighted

comb … Ward’s 
algo

DATA

DP for 
k-means
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k-median

DP for 
k-center

CLUSTERING

Key Technical Challenge: small changes to the parameters of the algo
can lead to radical changes in the tree or clustering produced.

𝑤

A B C D E

A B D E

A 
B 
C

DE
F

A B C D 
E F

A B C D E

A B D E

A 
B 
C

DE
F

A B C D 
E F

Problem: a single change to an early decision by the linkage algorithm 
can snowball and produce large changes later on.

• Pseudo-dimension is O(log n),
so small sample complexity.



• Break real line into a small number of intervals s.t. on each instance:

𝛼 ∈ ℝ

Clustering: Linkage + Dynamic Programming

Our Results: 𝛼-weighted linkage+DP Single 
linkage

Complete
linkage

𝛼 −Weighted

comb … Ward’s 
algo

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING

• Pseudo-dimension is O(log n),
so small sample complexity.

Key idea:

• Two 𝛼’s from one interval result in the same tree.

• And therefore the same clustering.

• And therefore the same performance cost.



𝛼 ∈ ℝ

Clustering: Linkage + Dynamic Programming

• Break real line into intervals s.t. on each instance same performance.

Clustering: Linkage + Dynamic Programming

Our Results: 𝛼-weighted linkage+DP

Pseudo-dimension is O(log n), so small sample complexity.

Key idea:

• For a clustering instance of 𝑛 points, 𝑂 𝑛8 intervals.
• Over any 𝛼 interval, so long as order in which all pairs of nodes are merged 

is fixed, then resulting tree is invariant.
𝓝𝟏 𝓝𝟐 𝓝𝟑 𝓝𝟒

𝑝 𝑞𝑝′ 𝑞′ 𝑟
𝑟’ 𝑠’

𝑠• Which will merge first, 
𝒩1 and 𝒩2, or 𝒩3 and 𝒩4?

• Depends on which of (1 − 𝛼)𝑑 𝑝, 𝑞 + 𝛼𝑑 𝑝′, 𝑞′ or (1 − 𝛼)𝑑 𝑟, 𝑠 + 𝛼𝑑 𝑟′, 𝑠′ is smaller.

• Any interval boundary must be an equality for some such set of 8 points, so 
𝑂 𝑛8 interval boundaries. Order of merges is fixed between any two 
adjacent interval boundaries.



𝛼 ∈ ℝ

So, pseudo-dim is O(log n). 

Clustering: Linkage + Dynamic Programming

• Break real line into intervals s.t. on each instance same performance.

Our Results: 𝛼-weighted linkage+DP

Pseudo-dimension is O(log n), so small sample complexity.

Key idea:

• For m clustering instances of n points, O mn8 intervals.



Clustering: Linkage + Dynamic Programming

Our Results: 𝛼-weighted linkage+DP

• Given sample S, can find best algo from this family in poly time.

Input 1:
Input 2: Input m:

Single 
linkage

Complete
linkage

𝛼 −Weighted

comb … Ward’s 
algo

DATA

DP for 
k-means

DP for 
k-median

DP for 
k-center

CLUSTERING

• Pseudo-dimension is O(log n).

Algorithm (high level)

• Solve for all 𝛼 intervals over the sample

• Find the 𝛼 interval with the smallest empirical cost

𝛼 ∈ ℝ

For 𝑚 = ෨𝑂 log𝑛 /𝜖2 ,  w.h.p. expected performance cost of best 𝛼 over 
the sample is 𝜖-close to optimal over the distribution



Partitioning Problems via IQPs

IQP formulation

Max 𝒙𝑇𝐴𝒙 = σ𝑖,𝑗 𝑎𝑖,𝑗𝑥𝑖𝑥𝑗
s.t. 𝒙 ∈ −1,1 𝑛

E.g., max-cut 

Max  σ(i,j)∈Ewij
1−vivj

2

s.t. vi ∈ −1,1

Many of these problems are NP-hard.



IQP formulation
Max 𝒙𝑇𝐴𝒙 = σ𝑖,𝑗 𝑎𝑖,𝑗𝑥𝑖𝑥𝑗

s.t. 𝒙 ∈ −1,1 𝑛

1. SDP relaxation: 

Max  σ𝑖,𝑗 𝑎𝑖,𝑗 𝒖𝑖 , 𝒖𝑗
subject to 𝒖𝑖 = 1

• Choose a random hyperplane.

2.Rounding procedure [Goemans and Williamson ‘95]

Partitioning Problems via IQPs

𝒖𝒊

𝒖𝒋

1

−1

• (Deterministic thresholding.) Set 𝑥𝑖 to -1 or 1 based on 
which side of the hyperplane the vector 𝒖𝑖 falls on.

Associate each binary variable 𝑥𝑖 with a vector 𝒖𝑖.

Algorithmic Approach: SDP + Rounding



IQP formulation
Max 𝒙𝑇𝐴𝒙 = σ𝑖,𝑗 𝑎𝑖,𝑗𝑥𝑖𝑥𝑗

s.t. 𝒙 ∈ −1,1 𝑛

1. SDP relaxation: 

Max  σ𝑖,𝑗 𝑎𝑖,𝑗 𝒖𝑖 , 𝒖𝑗
subject to 𝒖𝑖 = 1

• Choose a random hyperplane.

2. s-Linear Rounding [Feige&Landberg’06]

Parametrized family of rounding procedures

• Random thresholding

Set 𝑥𝑖 to 1 w.p
1

2
+

1

2
𝜑𝑠 𝒖𝑖 , 𝒁 and -1 w.p

1

2
−

1

2
𝜑𝑠 𝒖𝑖 , 𝒁

Associate each binary variable 𝑥𝑖 with a vector 𝒖𝑖.

𝜑𝑠 𝑥 = −𝟏𝑥<−𝑠 +
𝑥

𝑠
∙ 𝟏𝑥∈[−𝑠,𝑠] + 𝟏𝑥>𝑠

𝑥

𝜑𝑠 𝑥

𝑠

Algorithmic Approach: SDP + Rounding

𝒖𝒊

𝒖𝒋

outside margin, 
round to -1.

Inside margin, 
randomly round



IQP formulation
Max 𝒙𝑇𝐴𝒙 = σ𝑖,𝑗 𝑎𝑖,𝑗𝑥𝑖𝑥𝑗

s.t. 𝒙 ∈ −1,1 𝑛

1. SDP relaxation: 

Max  σ𝑖,𝑗 𝑎𝑖,𝑗 𝒖𝑖 , 𝒖𝑗
subject to 𝒖𝑖 = 1

• Choose a random hyperplane.

2. s-Linear Rounding [Feige&Landberg’06]

Parametrized family of rounding procedures

• Random thresholding

Set 𝑥𝑖 to 1 w.p
1

2
+

1

2
𝜑𝑠 𝒖𝑖 , 𝒁

and -1 w.p
1

2
−

1

2
𝜑𝑠 𝒖𝑖 , 𝒁

Associate each binary variable 𝑥𝑖 with a vector 𝒖𝑖.

Algorithmic Approach: SDP + Rounding

Semidefinite Programming 
Relaxation (SDP)

Integer Quadratic 
Programming (IQP)

GW 
rounding

1-linear 
roundig

s-linear 
rounding

Feasible solution to IQP

… … …



Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is O(log n), so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic 

in 
1

𝑠
with 𝑛 boundaries.

𝑠

IQP 
objective 

value

𝑧

Given sample S, can find best algo from this family in poly time.

• Solve for all 𝛼 intervals over the sample, find best parameter 
over each interval, output the best parameter overall.



Online Algorithm Selection

• So far, batch setting: collection of typical instances given upfront.

• [Balcan-Dick-Vitercik, FOCS 2018] online and private alg. selection.

• Scoring functions non-convex, with lots of discontinuities, cannot 
use known techniques.  They are piecewise Lipschitz.

Lipschitz within each 

piece

• Online optimization with Piecewise Lipschitz functions.

• Identify a general structural property
called dispersion that allows us to get
good regret bounds and show this
property holds for many alg. selection
problems.



Recent Work: Online Algorithm Selection 

Recent Work: [Balcan-Dick-Vitercik, FOCS 2018]

Online optimization

On each round t ∈ 1,… , T :

1. The online learning algorithm chooses a parameter 𝛒𝐭

2. The adversary chooses a piecewise Lipschitz function ut: 𝒞 → [0, H]

(corresponds to some problem instance and its induced scoring function)

Receive the score of the parameter we selected ut(ρt).

3. Full information: Algorithm observes the function ut ∙

4. Bandit feedback: Algorithm only receives payout ut(𝛒𝐭).

Goal: minimize regret: max
𝛒∈𝒞

σt=1
T ut(𝛒) − 𝔼 σt=1

T ut 𝛒𝐭

Our cumulative 

performancePerformance of best 

parameter in hindsight



Not dispersePiecewise Lipschitz 

function

Lipschitz within each 

piece

Disperse

Few boundaries within any 

interval

Many boundaries within interval

Dispersion, Sufficient Condition for No-Regret

u1(∙), … , uT(∙) is (𝐰, 𝐤)-dispersed if any ball of radius 𝐰 contains 
boundaries for at most 𝐤 of the ui. 



Full information: exponentially weighted forecaster [Cesa-Bianchi and Lugosi 2006]

On each round t ∈ 1, … , T :

• Sample a vector 𝝆𝑡 from a distribution 𝑝𝑡 where 

pt 𝛒 ∝ exp λ

s=1

t−1

us 𝛒

Full information: exponentially weighted forecaster

Our Results:

If  σt=1
T ut(∙) piecewise L-Lipschitz, u1(∙), … , uT(∙) is (𝐰, 𝐤)-dispersed.

The expected regret is O H Td log
1

𝐰
+ 𝐤 + TL𝐰 .

Usual T bound, but lose a log(1/w) multiplicative term, and an additive kH
term [for the k discontinuities that might be inside a ball of radius w around the optimal

solution] and an additive TLw for the Lipschitz constant.



For most problems:

• Set 𝐰 ≈ 1/ T

• Get 𝐤 = T × (some function of problem)

If  σt=1
T ut(∙) piecewise L-Lipschitz, u1(∙), … , uT(∙) is (w, k)-dispersed.

The expected regret is O H Td log
1

𝐰
+ 𝐤 + TL𝐰 .

• Overall, get regret ෩O H Td .

Full information: exponentially weighted forecaster



Example: rounding of SDP relaxation of IQP

Idea:

• Exploit randomness of algorithm to give a guarantee on
dispersion.

• Prove that whp, for any 𝛼 ≥
1

2
, the set of 𝑢𝑖 are

Tα−1, O nTα log n -dispersed

• Lipschitz value depends on which class of rounding schemes.

• Setting α =
1

2
leads to regret of ෩O(Hn T).



Discussion

• Future Work: use our insights to analyze problems commonly studied 
in these settings (e.g., tuning hyper-parameters in deep nets)

• Strong performance guarantees for data driven algorithm selection 
for combinatorial problems.

• Exploit structure to provide good sample complexity and regret 
bounds. Also privacy guarantees.

• From a learning theory point of view, techniques of independent 
interest beyond algorithm configuration.

• Related in spirit to Hyperparameter tuning, AutoML, MetaLearning. 




