# High-Dimensional Robust Mean Estimation in Nearly-Linear Time







Yu Cheng<sup>1</sup> Ilias Diakonikolas<sup>2</sup> Rong Ge<sup>1</sup>

<sup>1</sup>Duke University

<sup>2</sup>University of Southern California

#### Mean Estimation

- *Input:* N samples  $\{X_1, \ldots, X_N\}$  drawn from  $\mathcal{N}(\mu^*, I)$  on  $\mathbb{R}^d$ .
- *Goal:* Learn  $\mu^*$ .

#### Mean Estimation

- *Input:* N samples  $\{X_1, \ldots, X_N\}$  drawn from  $\mathcal{N}(\mu^*, I)$  on  $\mathbb{R}^d$ .
- *Goal:* Learn  $\mu^*$ .

• Empirical mean 
$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i$$
 works:  
 $\|\widehat{\mu} - \mu^*\|_2 \le \epsilon$  when  $N = \Omega(d/\epsilon^2)$ .

### Definition ( $\epsilon$ -Corruption)

• N samples are drawn i.i.d. from the ground-truth distribution D.

#### Definition ( $\epsilon$ -Corruption)

- N samples are drawn i.i.d. from the ground-truth distribution D.
- Adversary replaces  $\epsilon N$  samples with arbitrary points (after inspecting *D*, the samples, and the algorithm).

#### Definition ( $\epsilon$ -Corruption)

- N samples are drawn i.i.d. from the ground-truth distribution D.
- Adversary replaces  $\epsilon N$  samples with arbitrary points (after inspecting *D*, the samples, and the algorithm).

#### Robust Mean Estimation

- *Input:* an  $\epsilon$ -corrupted set of N samples  $\{X_1, \ldots, X_N\}$  drawn from an unknown distribution D on  $\mathbb{R}^d$  with mean  $\mu^*$ .
- *Goal:* Learn  $\mu^*$  in  $\ell_2$ -norm.

## Robustly learn $\mu^*$ given $\epsilon$ -corrupted samples from $\mathcal{N}(\mu^*, I)$ :

Algorithm Error Guarantee Poly-Time?

## Robustly learn $\mu^*$ given $\epsilon$ -corrupted samples from $\mathcal{N}(\mu^*, I)$ :

| Algorithm        | Error Guarantee        | Poly-Time? |
|------------------|------------------------|------------|
| Tukey Median     | $O(\epsilon)$          | No         |
| Geometric Median | $O(\epsilon \sqrt{d})$ | Yes        |
| Tournament       | $O(\epsilon)$          | No         |
| Pruning          | $O(\epsilon \sqrt{d})$ | Yes        |
| RANSAC           | $\infty$               | Yes        |

## Robustly learn $\mu^{\star}$ given $\epsilon\text{-corrupted}$ samples from $\mathcal{N}(\mu^{\star},I)$ :

| Algorithm        | Error Guarantee                       | Poly-Time? |
|------------------|---------------------------------------|------------|
| Tukey Median     | $O(\epsilon)$                         | No         |
| Geometric Median | $O(\epsilon \sqrt{d})$                | Yes        |
| Tournament       | $O(\epsilon)$                         | No         |
| Pruning          | $O(\epsilon \sqrt{d})$                | Yes        |
| RANSAC           | $\infty$                              | Yes        |
| [LRV'16]         | $O(\epsilon \sqrt{\log d})$           | Yes        |
| [DKKLMS'16]      | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | Yes        |

## Robustly learn $\mu^{\star}$ given $\epsilon\text{-corrupted}$ samples from $\mathcal{N}(\mu^{\star},I)$ :

| Algorithm        | Error Guarantee                       | Poly-Time? |
|------------------|---------------------------------------|------------|
| Tukey Median     | $O(\epsilon)$                         | No         |
| Geometric Median | $O(\epsilon \sqrt{d})$                | Yes        |
| Tournament       | $O(\epsilon)$                         | No         |
| Pruning          | $O(\epsilon \sqrt{d})$                | Yes        |
| RANSAC           | $\infty$                              | Yes        |
| [LRV'16]         | $O(\epsilon \sqrt{\log d})$           | Yes        |
| [DKKLMS'16]      | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | Yes        |

## Robustly learn $\mu^*$ given $\epsilon$ -corrupted samples from $\mathcal{N}(\mu^*, I)$ :

| Algorithm | Error ( $\delta$ ) | Runtime |
|-----------|--------------------|---------|
|-----------|--------------------|---------|

## Robustly learn $\mu^{\star}$ given $\epsilon\text{-corrupted}$ samples from $\mathcal{N}(\mu^{\star},I)$ :

| Algorithm                  | Error ( $\delta$ )          | Runtime              |
|----------------------------|-----------------------------|----------------------|
| Dimension Halving [LRV'16] | $O(\epsilon \sqrt{\log d})$ | $\Omega(Nd^2)$ + SVD |

Robustly learn  $\mu^{\star}$  given  $\epsilon\text{-corrupted}$  samples from  $\mathcal{N}(\mu^{\star},I)$ :

| Algorithm                      | Error ( $\delta$ )                    | Runtime                       |
|--------------------------------|---------------------------------------|-------------------------------|
| Dimension Halving [LRV'16]     | $O(\epsilon \sqrt{\log d})$           | $\Omega(\mathit{Nd}^2)$ + SVD |
| Convex Programming [DKKLMS'16] | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | Ellipsoid Algorithm           |

Robustly learn  $\mu^*$  given  $\epsilon$ -corrupted samples from  $\mathcal{N}(\mu^*, I)$ :

| Algorithm                      | Error ( $\delta$ )                    | Runtime                 |
|--------------------------------|---------------------------------------|-------------------------|
| Dimension Halving [LRV'16]     | $O(\epsilon \sqrt{\log d})$           | $\Omega(Nd^2)$ + SVD    |
| Convex Programming [DKKLMS'16] | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | Ellipsoid Algorithm     |
| Filtering [DKKLMS'16]          | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $\Omega(\mathit{Nd}^2)$ |

Robustly learn  $\mu^*$  given  $\epsilon$ -corrupted samples from  $\mathcal{N}(\mu^*, I)$ :

| Algorithm                      | Error ( $\delta$ )                    | Runtime                        |
|--------------------------------|---------------------------------------|--------------------------------|
| Dimension Halving [LRV'16]     | $O(\epsilon \sqrt{\log d})$           | $\Omega(Nd^2)$ + SVD           |
| Convex Programming [DKKLMS'16] | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | Ellipsoid Algorithm            |
| Filtering [DKKLMS'16]          | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $\Omega(\mathit{Nd}^2)$        |
| This paper                     | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $\widetilde{O}(Nd/\epsilon^6)$ |

All these algorithms have sample complexity  $N = O(d/\delta^2)$ .

| Distribution | Error ( $\delta$ ) | # of Samples (N) | Runtime |
|--------------|--------------------|------------------|---------|
|--------------|--------------------|------------------|---------|

## **Our Results**

Robustly learn  $\mu^*$  given  $\epsilon$ -corrupted samples from D on  $\mathbb{R}^d$ .

| Distribution                           | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian                           | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance ( $\Sigma \leq I$ ) | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | 0( <i>Mu</i> /e)        |

| Distribution                           | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian                           | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance ( $\Sigma \leq I$ ) | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | $O(Ma/\epsilon)$        |

When  $\epsilon$  is constant, our algorithm has the best possible error guarantee, sample complexity, and running time (up to polylogarithmic factors).

| Distribution                           | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian                           | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance ( $\Sigma \leq I$ ) | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | $O(Ma/\epsilon)$        |

When  $\epsilon$  is constant, our algorithm has the best possible error guarantee, sample complexity, and running time (up to polylogarithmic factors).

The  $\epsilon^{-6}$  in runtime comes from packing/covering SDP solvers.

| Distribution                           | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian                           | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance ( $\Sigma \leq I$ ) | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | $O(Ma/\epsilon)$        |

When  $\epsilon$  is constant, our algorithm has the best possible error guarantee, sample complexity, and running time (up to polylogarithmic factors).

The  $\epsilon^{-6}$  in runtime comes from packing/covering SDP solvers. Suppose we can solve one packing/covering SDP in time  $T = T(N, d, \epsilon)$ . Our runtime is  $O(Nd) + \widetilde{O}(\log^2(d/\epsilon))(T + d^2)$ .

| Distribution | Error ( $\delta$ ) | # of Samples (N) | Runtime |
|--------------|--------------------|------------------|---------|
|--------------|--------------------|------------------|---------|

| Distribution                           | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian                           | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance ( $\Sigma \leq I$ ) | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | U(INU/E)                |

| Distribution                           | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian                           | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance ( $\Sigma \leq I$ ) | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | 0(1vu/e)                |

Robust mean estimation under bounded covariance assumptions has been used as a subroutine to obtain robust learners for a wide range of supervised learning problems that can be phrased as stochastic convex programs.

| Distribution                           | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|----------------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian                           | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance ( $\Sigma \leq I$ ) | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | $O(Ma/\epsilon)$        |

Robust mean estimation under bounded covariance assumptions has been used as a subroutine to obtain robust learners for a wide range of supervised learning problems that can be phrased as stochastic convex programs.

Our result provides a faster implementation of such a subroutine, hence yields faster robust algorithms for all these problems.

[DKKLMS'16]: To shift the empirical mean far from  $\mu^*$ , the corrupted samples must introduce a large eigenvalue in a covariance-like matrix.

[DKKLMS'16]: To shift the empirical mean far from  $\mu^*$ , the corrupted samples must introduce a large eigenvalue in a covariance-like matrix.

#### Good Weights

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^{\mathsf{T}} \right)$$
  
subject to  $w \in \Delta_{N,\epsilon} \left( \sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1-\epsilon)N} \right)$ 

[DKKLMS'16]: To shift the empirical mean far from  $\mu^*$ , the corrupted samples must introduce a large eigenvalue in a covariance-like matrix.

#### Good Weights

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^{\top} \right)$$
  
subject to  $w \in \Delta_{N,\epsilon} \left( \sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1-\epsilon)N} \right)$ 

#### Lemma ([DKKLMS'16])

If we can find a near-optimal solution w, we can output  $\widehat{\mu}_w = \sum_i w_i X_i$ .

[DKKLMS'16]: To shift the empirical mean far from  $\mu^*$ , the corrupted samples must introduce a large eigenvalue in a covariance-like matrix.

### Good Weights

$$\begin{array}{ll} \text{minimize} & \lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^\top \right) \\ \text{subject to} & w \in \Delta_{N, \epsilon} & \left( \sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1 - \epsilon)N} \right) \end{array}$$

#### Lemma ([DKKLMS'16])

If we can find a near-optimal solution w, we can output  $\widehat{\mu}_w = \sum_i w_i X_i$ .

This looks like a packing SDP in *w* (which we can solve in nearly-linear time). Except that ...

[DKKLMS'16]: To shift the empirical mean far from  $\mu^*$ , the corrupted samples must introduce a large eigenvalue in a covariance-like matrix.

### Good Weights

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^{\top} \right)$$
  
subject to  $w \in \Delta_{N,\epsilon} \left( \sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1-\epsilon)N} \right)$ 

#### Lemma ([DKKLMS'16])

If we can find a near-optimal solution w, we can output  $\widehat{\mu}_w = \sum_i w_i X_i$ .

This looks like a packing SDP in w (which we can solve in nearly-linear time). Except that ... we do not know  $\mu^*$ .

# Our Approach

Idea: guess the mean  $\nu$  and solve the SDP with parameter  $\nu$ .

Idea: guess the mean  $\nu$  and solve the SDP with parameter  $\nu$ .

# Primal SDP (with parameter $\nu$ ) minimize $\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$ subject to $w \in \Delta_{N, \epsilon}$

Idea: guess the mean  $\nu$  and solve the SDP with parameter  $\nu$ .

# Primal SDP (with parameter $\nu$ ) minimize $\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\mathsf{T}} \right)$ subject to $w \in \Delta_{N,\epsilon}$

We give a win-win analysis: either

• a near-optimal solution w to the primal SDP give a good answer  $\widehat{\mu}_w$ , or

Idea: guess the mean  $\nu$  and solve the SDP with parameter  $\nu.$ 

# Primal SDP (with parameter $\nu$ ) minimize $\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\mathsf{T}} \right)$ subject to $w \in \Delta_{N,\epsilon}$

We give a win-win analysis: either

- a near-optimal solution w to the primal SDP give a good answer  $\widehat{\mu}_w$ , or
- a near-optimal solution to the dual SDP yields a new guess  $\nu'$  that is closer to  $\mu^*$  by a constant factor.

# Our Approach

Iteratively move  $\nu$  closer to  $\mu^*$  using the dual SDP, until primal SDP has a good solution and we can output  $\widehat{\mu}_w$ .

# Our Approach

Iteratively move  $\nu$  closer to  $\mu^*$  using the dual SDP, until primal SDP has a good solution and we can output  $\widehat{\mu}_w$ .



## **Dual SDP**

### Primal SDP (with parameter $\nu$ )

minimize  $\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$ subject to  $w \in \Delta_{N,\epsilon}$
### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$$
  
subject to  $w \in \Delta_{N, \epsilon}$ 

### Dual SDP (with parameter $\nu$ )

maximize Mean of the smallest  $(1 - \epsilon)$ -fraction of  $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$ subject to  $M \ge 0, \operatorname{tr}(M) \le 1$ 

### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$$
  
subject to  $w \in \Delta_{N, \epsilon}$ 

### Dual SDP (with parameter $\nu$ )

maximize Mean of the smallest  $(1 - \epsilon)$ -fraction of  $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$ subject to  $M \ge 0, \operatorname{tr}(M) \le 1$ 

• The dual SDP certifies that there are no good weights that can make the spectral norm small.

### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$$
  
subject to  $w \in \Delta_{N, \epsilon}$ 

### Dual SDP (with parameter $\nu$ )

maximize Mean of the smallest  $(1 - \epsilon)$ -fraction of  $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$ subject to  $M \ge 0, \operatorname{tr}(M) \le 1$ 

- The dual SDP certifies that there are no good weights that can make the spectral norm small.
- If the solution is rank-one:  $M = yy^{T}$ , then in the direction of *y*, the variance is large no matter how we reweight the samples.

### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$$
  
subject to  $w \in \Delta_{N, \epsilon}$ 

### Dual SDP (with parameter $\nu$ )

maximize Mean of the smallest  $(1 - \epsilon)$ -fraction of  $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$ subject to  $M \ge 0, \operatorname{tr}(M) \le 1$ 

- The dual SDP certifies that there are no good weights that can make the spectral norm small.
- If the solution is rank-one:  $M = yy^{T}$ , then in the direction of *y*, the variance is large no matter how we reweight the samples.
- Intuition: When  $\nu$  is far from  $\mu^*$ , y should align with  $(\nu \mu^*)$ .

Why would the dual SDP pick the direction  $(\nu - \mu^*)$ ?

Why would the dual SDP pick the direction  $(\nu - \mu^*)$ ?



## Conditions on the Good Samples

We require the following deterministic conditions on the good samples:

### Concentration Bounds (for Sub-Gaussian Distributions)

For all 
$$w \in \Delta_{N,\epsilon}$$
 (G is the set of good samples):  

$$\left\| \sum_{i \in G} w_i (X_i - \mu^*) \right\|_2 \le O(\epsilon \sqrt{\log(1/\epsilon)}) =: \delta_1,$$

$$\left\| \sum_{i \in G} w_i (X_i - \mu^*) (X_i - \mu^*)^\top - I \right\|_2 \le O(\epsilon \log(1/\epsilon)) =: \delta_2.$$

We require the following deterministic conditions on the good samples:

### Concentration Bounds (for Sub-Gaussian Distributions)

For all  $w \in \Delta_{N,\epsilon}$  (*G* is the set of good samples):  $\left\| \sum_{i \in G} w_i (X_i - \mu^*) \right\|_2 \le O(\epsilon \sqrt{\log(1/\epsilon)}) =: \delta_1,$   $\left\| \sum_{i \in G} w_i (X_i - \mu^*) (X_i - \mu^*)^\top - I \right\|_2 \le O(\epsilon \log(1/\epsilon)) =: \delta_2.$ 

Removing  $\epsilon N$  samples does not affect the first/second moments too much.

We require the following deterministic conditions on the good samples:

### Concentration Bounds (for Sub-Gaussian Distributions)

For all  $w \in \Delta_{N,\epsilon}$  (G is the set of good samples):  $\left\| \sum_{i \in G} w_i (X_i - \mu^*) \right\|_2 \le O(\epsilon \sqrt{\log(1/\epsilon)}) =: \delta_1,$   $\left\| \sum_{i \in G} w_i (X_i - \mu^*) (X_i - \mu^*)^\top - I \right\|_2 \le O(\epsilon \log(1/\epsilon)) =: \delta_2.$ 

Removing  $\epsilon N$  samples does not affect the first/second moments too much.

This is the only place we use the sub-Gaussian assumption.

#### Lemma

When  $\|\nu - \mu^*\|_2 \ge \Omega(\beta)$ ,  $1 + 0.99 \|\nu - \mu^*\|_2^2 \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^*\|_2^2$ .

#### Lemma

When 
$$\|\nu - \mu^{\star}\|_{2} \ge \Omega(\beta)$$
,  
  $1 + 0.99 \|\nu - \mu^{\star}\|_{2}^{2} \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^{\star}\|_{2}^{2}$ .

### Proof

#### Lemma

When 
$$\|\nu - \mu^{\star}\|_{2} \ge \Omega(\beta)$$
,  
  $1 + 0.99 \|\nu - \mu^{\star}\|_{2}^{2} \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^{\star}\|_{2}^{2}$ .

### Proof

$$OPT_{\nu} \leq \lambda_{\max}\left(\sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\mathsf{T}}\right) = \max_{\|y\|_2 = 1} \sum_{i \in G} w_i (X_i - \nu, y)^2$$

#### Lemma

When 
$$\|\nu - \mu^{\star}\|_{2} \ge \Omega(\beta)$$
,  
  $1 + 0.99 \|\nu - \mu^{\star}\|_{2}^{2} \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^{\star}\|_{2}^{2}$ .

### Proof

$$OPT_{\nu} \leq \lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\mathsf{T}} \right) = \max_{\|y\|_2 = 1} \sum_{i \in G} w_i \langle X_i - \nu, y \rangle^2$$
$$= \max_{\|y\|_2 = 1} \left( \sum_{i \in G} w_i \langle X_i - \mu^*, y \rangle^2 + \langle \mu^* - \nu, y \rangle^2 + 2 \langle \sum_{i \in G} w_i (X_i - \mu^*), y \rangle \langle \mu^* - \nu, y \rangle \right)$$

#### Lemma

When 
$$\|\nu - \mu^{\star}\|_{2} \ge \Omega(\beta)$$
,  
  $1 + 0.99 \|\nu - \mu^{\star}\|_{2}^{2} \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^{\star}\|_{2}^{2}$ .

### Proof

$$\begin{aligned} \text{OPT}_{\nu} &\leq \lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\mathsf{T}} \right) = \max_{\|y\|_2 = 1} \sum_{i \in G} w_i \langle X_i - \nu, y \rangle^2 \\ &= \max_{\|y\|_2 = 1} \left( \sum_{i \in G} w_i \langle X_i - \mu^*, y \rangle^2 + \langle \mu^* - \nu, y \rangle^2 + 2 \langle \sum_{i \in G} w_i (X_i - \mu^*), y \rangle \langle \mu^* - \nu, y \rangle \right) \\ &\leq \max_{\|y\|_2 = 1} \left( (1 + \delta_2) + \langle \mu^* - \nu, y \rangle^2 + 2 \delta_1 \langle \mu^* - \nu, y \rangle \right) \end{aligned}$$

#### Lemma

When 
$$\|\nu - \mu^{\star}\|_{2} \ge \Omega(\beta)$$
,  
  $1 + 0.99 \|\nu - \mu^{\star}\|_{2}^{2} \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^{\star}\|_{2}^{2}$ .

### Proof

$$OPT_{\nu} \leq \lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right) = \max_{\|y\|_2 = 1} \sum_{i \in G} w_i \langle X_i - \nu, y \rangle^2$$
$$= \max_{\|y\|_2 = 1} \left( \sum_{i \in G} w_i \langle X_i - \mu^*, y \rangle^2 + \langle \mu^* - \nu, y \rangle^2 + 2 \langle \sum_{i \in G} w_i (X_i - \mu^*), y \rangle \langle \mu^* - \nu, y \rangle \right)$$
$$\leq \max_{\|y\|_2 = 1} \left( (1 + \delta_2) + \langle \mu^* - \nu, y \rangle^2 + 2 \delta_1 \langle \mu^* - \nu, y \rangle \right)$$
$$= (1 + \delta_2) + \|\mu^* - \nu\|_2^2 + 2 \delta_1 \|\mu^* - \nu\|_2$$

#### Lemma

When 
$$\|\nu - \mu^{\star}\|_{2} \ge \Omega(\beta)$$
,  
  $1 + 0.99 \|\nu - \mu^{\star}\|_{2}^{2} \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^{\star}\|_{2}^{2}$ .

### Proof

$$OPT_{\nu} \leq \lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right) = \max_{\|y\|_2 = 1} \sum_{i \in G} w_i \langle X_i - \nu, y \rangle^2$$
  
= 
$$\max_{\|y\|_2 = 1} \left( \sum_{i \in G} w_i \langle X_i - \mu^{\star}, y \rangle^2 + \langle \mu^{\star} - \nu, y \rangle^2 + 2 \langle \sum_{i \in G} w_i (X_i - \mu^{\star}), y \rangle \langle \mu^{\star} - \nu, y \rangle \right)$$
  
$$\leq \max_{\|y\|_2 = 1} \left( (1 + \delta_2) + \langle \mu^{\star} - \nu, y \rangle^2 + 2\delta_1 \langle \mu^{\star} - \nu, y \rangle \right)$$
  
= 
$$(1 + \delta_2) + \|\mu^{\star} - \nu\|_2^2 + 2\delta_1 \|\mu^{\star} - \nu\|_2 \qquad (\text{so } \beta = \sqrt{\delta_2} = \sqrt{\epsilon \ln(1/\epsilon)}.)$$

For all  $w \in \Delta_{N,2\epsilon}$ , if  $\|\widehat{\mu}_w - \mu^*\|_2 \ge \Omega(\delta)$ , then for all  $\nu \in \mathbb{R}^d$ ,

$$\lambda_{\max}\left(\sum_{i=1}^{N} w_i(X_i - \nu)(X_i - \nu)^{\mathsf{T}}\right) \ge 1 + \Omega(\delta^2/\epsilon) = 1 + \Omega(\beta^2).$$

For all  $w \in \Delta_{N,2\epsilon}$ , if  $\|\widehat{\mu}_w - \mu^*\|_2 \ge \Omega(\delta)$ , then for all  $\nu \in \mathbb{R}^d$ ,

$$\lambda_{\max}\left(\sum_{i=1}^{N} w_i(X_i - \nu)(X_i - \nu)^{\mathsf{T}}\right) \ge 1 + \Omega(\delta^2/\epsilon) = 1 + \Omega(\beta^2).$$

Implication: if objective value of w is small with any  $\nu$ , then  $\widehat{\mu}_w$  is close to  $\mu^*$ .

For all  $w \in \Delta_{N,2\epsilon}$ , if  $\|\widehat{\mu}_w - \mu^*\|_2 \ge \Omega(\delta)$ , then for all  $\nu \in \mathbb{R}^d$ ,

$$\lambda_{\max}\left(\sum_{i=1}^{N} w_i(X_i - \nu)(X_i - \nu)^{\mathsf{T}}\right) \geq 1 + \Omega(\delta^2/\epsilon) = 1 + \Omega(\beta^2).$$

Implication: if objective value of w is small with any  $\nu$ , then  $\widehat{\mu}_w$  is close to  $\mu^*$ .

Proof sketch:

•  $\nu$  must be close to  $\mu^*$ , otherwise  $OPT_{\nu} \approx 1 + \|\nu - \mu^*\|_2^2$  is already large.

For all  $w \in \Delta_{N,2\epsilon}$ , if  $\|\widehat{\mu}_w - \mu^*\|_2 \ge \Omega(\delta)$ , then for all  $\nu \in \mathbb{R}^d$ ,

$$\lambda_{\max}\left(\sum_{i=1}^{N} w_i(X_i - \nu)(X_i - \nu)^{\mathsf{T}}\right) \geq 1 + \Omega(\delta^2/\epsilon) = 1 + \Omega(\beta^2).$$

Implication: if objective value of w is small with any  $\nu$ , then  $\widehat{\mu}_w$  is close to  $\mu^*$ .

#### Proof sketch:

- $\nu$  must be close to  $\mu^*$ , otherwise  $OPT_{\nu} \approx 1 + \|\nu \mu^*\|_2^2$  is already large.
- When  $\nu$  is close to  $\mu^*$ ,  $(X_i \nu)(X_i \nu)^{\top}$  is close to  $(X_i \mu^*)(X_i \mu^*)^{\top}$ .

Fix an approximately optimal solution M to the dual SDP with parameter  $\nu$ . If the objective value of M is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Fix an approximately optimal solution M to the dual SDP with parameter  $\nu$ . If the objective value of M is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Intuitively, if the dual SDP throws away all the bad samples,  $1+\|\nu-\mu^\star\|_2^2\approx \text{OPT}$ 

Fix an approximately optimal solution M to the dual SDP with parameter  $\nu$ . If the objective value of M is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Intuitively, if the dual SDP throws away all the bad samples,  $1 + \|\nu - \mu^*\|_2^2 \approx \text{OPT} \approx \mathbb{E}_{X \in G}[(X - \nu)^\top M(X - \nu)]$ 

Fix an approximately optimal solution M to the dual SDP with parameter  $\nu$ . If the objective value of M is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Intuitively, if the dual SDP throws away all the bad samples,  $1 + \|\nu - \mu^*\|_2^2 \approx \text{OPT} \approx \mathbb{E}_{X \in G}[(X - \nu)^\top M(X - \nu)] = \langle M, I + (\nu - \mu^*)(\nu - \mu^*)^\top \rangle.$ 

Fix an approximately optimal solution M to the dual SDP with parameter  $\nu$ . If the objective value of M is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Intuitively, if the dual SDP throws away all the bad samples,  $1 + \|\nu - \mu^*\|_2^2 \approx \text{OPT} \approx \mathbb{E}_{X \in G}[(X - \nu)^\top M(X - \nu)] = \langle M, I + (\nu - \mu^*)(\nu - \mu^*)^\top \rangle$ . Because tr(*M*) = 1, the top eigenvector of *M* aligns approx. with  $(\nu - \mu^*)$ .

Fix an approximately optimal solution M to the dual SDP with parameter  $\nu$ . If the objective value of M is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Intuitively, if the dual SDP throws away all the bad samples,  $1 + \|\nu - \mu^*\|_2^2 \approx \text{OPT} \approx \mathbb{E}_{X \in G}[(X - \nu)^\top M(X - \nu)] = \langle M, I + (\nu - \mu^*)(\nu - \mu^*)^\top \rangle.$ Because  $\operatorname{tr}(M) = 1$ , the top eigenvector of M aligns approx. with  $(\nu - \mu^*)$ . We will move  $\nu$  closer to  $\nu'$ :

Fix an approximately optimal solution M to the dual SDP with parameter  $\nu$ . If the objective value of M is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Intuitively, if the dual SDP throws away all the bad samples,  $1 + \|\nu - \mu^*\|_2^2 \approx \text{OPT} \approx \mathbb{E}_{X \in G}[(X - \nu)^\top M(X - \nu)] = \langle M, I + (\nu - \mu^*)(\nu - \mu^*)^\top \rangle.$ Because  $\operatorname{tr}(M) = 1$ , the top eigenvector of M aligns approx. with  $(\nu - \mu^*)$ . We will move  $\nu$  closer to  $\nu'$ :

• The top eigenvector of M tells us which direction  $\nu$  should move.

Fix an approximately optimal solution *M* to the dual SDP with parameter  $\nu$ . If the objective value of *M* is at least  $1 + \Omega(\beta^2)$ , then we can find  $\nu' \in \mathbb{R}^d$  such that  $\|\nu' - \mu^*\|_2 \leq \frac{9}{10} \|\nu - \mu^*\|_2$ .

Intuitively, if the dual SDP throws away all the bad samples,  $1 + \|\nu - \mu^*\|_2^2 \approx \text{OPT} \approx \mathbb{E}_{X \in G}[(X - \nu)^\top M(X - \nu)] = \langle M, I + (\nu - \mu^*)(\nu - \mu^*)^\top \rangle.$ Because  $\operatorname{tr}(M) = 1$ , the top eigenvector of M aligns approx. with  $(\nu - \mu^*)$ . We will move  $\nu$  closer to  $\nu'$ :

- The top eigenvector of M tells us which direction  $\nu$  should move.
- The objective value  $OPT_{\nu}$  tells us how far  $\nu$  should move.

The lemma shows that despite the error from

The lemma shows that despite the error from

- the errors in the concentration bounds, and
- we are only solving the SDP approximately,

The lemma shows that despite the error from

- the errors in the concentration bounds, and
- we are only solving the SDP approximately,

the top eigenvector of *M* still aligns approximately with  $(\nu - \mu^*)$ .

The lemma shows that despite the error from

- the errors in the concentration bounds, and
- we are only solving the SDP approximately,

the top eigenvector of *M* still aligns approximately with  $(\nu - \mu^*)$ .



### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max} \left( \sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\mathsf{T}} \right)$$
 subject to  $w \in \Delta_{N,\epsilon}$ 

### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max}\left(\sum_{i=1}^N w_i(X_i - \nu)(X_i - \nu)^{\top}\right)$$
 subject to  $w \in \Delta_{N,\epsilon}$ 

Packing/covering SDPs can be solved in nearly-linear time [JY'11, ALO'16, PTZ'16].

### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max}\left(\sum_{i=1}^N w_i(X_i - \nu)(X_i - \nu)^{\top}\right)$$
 subject to  $w \in \Delta_{N,\epsilon}$ 

Packing/covering SDPs can be solved in nearly-linear time [JY'11, ALO'16, PTZ'16].

This is not a packing SDP, but we can flip the objective/constraints.

### Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max}\left(\sum_{i=1}^N w_i(X_i - \nu)(X_i - \nu)^{\top}\right)$$
 subject to  $w \in \Delta_{N,\epsilon}$ 

Packing/covering SDPs can be solved in nearly-linear time [JY'11, ALO'16, PTZ'16].

This is not a packing SDP, but we can flip the objective/constraints.

### Packing SDP with parameters $(\nu, \rho)$

maximize  $\|w\|_1$  subject to  $0 \le w_i \le \frac{1}{(1-\epsilon)N}, \sum_i w_i(\rho X_i X_i^{\mathsf{T}}) \le I$
## Solving the SDPs Approximately

## Primal SDP (with parameter $\nu$ )

minimize 
$$\lambda_{\max}\left(\sum_{i=1}^N w_i(X_i - \nu)(X_i - \nu)^{\top}\right)$$
 subject to  $w \in \Delta_{N,\epsilon}$ 

Packing/covering SDPs can be solved in nearly-linear time [JY'11, ALO'16, PTZ'16].

This is not a packing SDP, but we can flip the objective/constraints.

## Packing SDP with parameters $(\nu, \rho)$

maximize  $\|w\|_1$  subject to  $0 \le w_i \le \frac{1}{(1-\epsilon)N}$ ,  $\sum_i w_i(\rho X_i X_i^{\top}) \le I$ 

Binary search for  $\rho$  and check if max  $||w||_1 \ge 1$  ( $\rho^* = \frac{1}{OPT_{\nu}}$ ). Need to handle bi-criteria approximations. Algorithm 1: Robust Mean Estimation for Known Covariance Sub-Gaussian

- Let  $\nu = \frac{1}{N} \sum_{i=1}^{N} X_i$  be the empirical mean;
- for i = 1 to  $O(\log(d \log N/\epsilon))$  do

Compute either

(*i*) a good solution  $w \in \mathbb{R}^N$  for the primal SDP with parameters  $(\nu, 2\epsilon)$ ; or (*ii*) a good solution  $M \in \mathbb{R}^{d \times d}$  for the dual SDP with parameters  $(\nu, \epsilon)$ ; **if** the objective value of w in primal  $SDP \le 1 + 400\epsilon \ln(1/\epsilon)$  **then**  | **return** the weighted empirical mean  $\widehat{\mu}_w = \sum_{i=1}^N w_i X_i$ ; **else** 

Move  $\nu$  closer to  $\mu^*$  using the top eigenvector of M.

Algorithm 2: Robust Mean Estimation for Known Covariance Sub-Gaussian

- Let  $\nu = \frac{1}{N} \sum_{i=1}^{N} X_i$  be the empirical mean;
- for i = 1 to  $O(\log(d \log N/\epsilon))$  do

Compute either

(*i*) a good solution  $w \in \mathbb{R}^N$  for the primal SDP with parameters  $(\nu, 2\epsilon)$ ; or (*ii*) a good solution  $M \in \mathbb{R}^{d \times d}$  for the dual SDP with parameters  $(\nu, \epsilon)$ ; **if** the objective value of w in primal  $SDP \le 1 + 400\epsilon \ln(1/\epsilon)$  **then**  | **return** the weighted empirical mean  $\widehat{\mu}_w = \sum_{i=1}^N w_i X_i$ ; **else** 

Move  $\nu$  closer to  $\mu^*$  using the top eigenvector of M.

| Distribution       | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|--------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian       | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(NJ/c^6)$ |
| Bounded Covariance | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | $O(ma/\epsilon)$        |

| Distribution       | Error ( $\delta$ )                    | # of Samples (N)            | Runtime                 |
|--------------------|---------------------------------------|-----------------------------|-------------------------|
| Sub-Gaussian       | $O(\epsilon \sqrt{\log(1/\epsilon)})$ | $O(d/\delta^2)$             | $\widetilde{O}(Nd/c^6)$ |
| Bounded Covariance | $O(\sqrt{\epsilon})$                  | $\widetilde{O}(d/\delta^2)$ | $O(Mu/\epsilon)$        |

We hope our work will serve as a starting point for the design of faster algorithms for high-dimensional robust estimation.

• Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean estimation / sparse PCA)?

- Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean estimation / sparse PCA)?
- Can we avoid the  $poly(1/\epsilon)$  in the runtime?

- Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean estimation / sparse PCA)?
- Can we avoid the  $poly(1/\epsilon)$  in the runtime?
- Robust covariance estimation in time  $\widetilde{O}(Nd)/\epsilon^{O(1)}$ ?