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Mean Estimation

Mean Estimation

Input: N samples {X1, . . . ,XN} drawn from N(µ⋆, I) on Rd
.

Goal: Learn µ⋆.

Empirical mean µ̂ =
1
N ∑

N
i=1 Xi works:

∥µ̂ − µ⋆∥2 ≤ ε when N = Ω(d/ε2).
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Robust Mean Estimation

Definition (ε-Corruption)

N samples are drawn i.i.d. from the ground-truth distribution D.

Adversary replaces εN samples with arbitrary points (a�er inspecting D,

the samples, and the algorithm).

Robust Mean Estimation

Input: an ε-corrupted set of N samples {X1, . . . ,XN} drawn from an

unknown distribution D on Rd
with mean µ⋆.

Goal: Learn µ⋆ in `2-norm.
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Previous Work

Robustly learn µ⋆ given ε-corrupted samples from N(µ⋆, I):

Algorithm Error Guarantee Poly-Time?

Tukey Median O(ε) No

Geometric Median O(ε
√

d) Yes

Tournament O(ε) No

Pruning O(ε
√

d) Yes

RANSAC ∞ Yes

[LRV’16] O(ε
√

log d) Yes

[DKKLMS’16] O(ε
√

log(1/ε)) Yes
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Previous Work

Robustly learn µ⋆ given ε-corrupted samples from N(µ⋆, I):

Algorithm Error (δ) Runtime

Dimension Halving [LRV’16] O(ε
√

log d) Ω(Nd2) + SVD

Convex Programming [DKKLMS’16] O(ε
√

log(1/ε)) Ellipsoid Algorithm

Filtering [DKKLMS’16] O(ε
√

log(1/ε)) Ω(Nd2)

This paper O(ε
√

log(1/ε)) Õ(Nd/ε6)

All these algorithms have sample complexity N = O(d/δ2).
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Our Results

Robustly learn µ⋆ given ε-corrupted samples from D on Rd
.

Distribution Error (δ) # of Samples (N) Runtime

Sub-Gaussian O(ε
√

log(1/ε)) O(d/δ2)
Õ(Nd/ε6)

Bounded Covariance (Σ ⪯ I ) O(

√

ε) Õ(d/δ2)

When ε is constant, our algorithm has the best possible error guarantee,

sample complexity, and running time (up to polylogarithmic factors).

The ε−6 in runtime comes from packing/covering SDP solvers.

Suppose we can solve one packing/covering SDP in time T = T(N , d, ε).

Our runtime is O(Nd) + Õ(log2(d/ε)) (T + d2).
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Our Results

Distribution Error (δ) # of Samples (N) Runtime

Sub-Gaussian O(ε
√

log(1/ε)) O(d/δ2)
Õ(Nd/ε6)

Bounded Covariance (Σ ⪯ I ) O(

√

ε) Õ(d/δ2)

Robust mean estimation under bounded covariance assumptions has been

used as a subroutine to obtain robust learners for a wide range of supervised

learning problems that can be phrased as stochastic convex programs.

Our result provides a faster implementation of such a subroutine, hence

yields faster robust algorithms for all these problems.
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Õ(Nd/ε6)

Bounded Covariance (Σ ⪯ I ) O(

√
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Intuition: Reweight the Samples

[DKKLMS’16]: To shi� the empirical mean far from µ⋆, the corrupted

samples must introduce a large eigenvalue in a covariance-like matrix.

Good Weights

minimize λmax (∑
N
i=1wi(Xi − µ

⋆
)(Xi − µ

⋆
)
⊺
)

subject to w ∈∆N ,ε (∑i wi = 1 and 0 ≤ wi ≤ 1
(1−ε)N )

Lemma ([DKKLMS’16])

If we can find a near-optimal solution w, we can output µ̂w = ∑i wiXi.

This looks like a packing SDP in w (which we can solve in nearly-linear time).

Except that ... we do not know µ⋆.
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Our Approach

Idea: guess the mean ν and solve the SDP with parameter ν.

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
)

subject to w ∈∆N ,ε

We give a win-win analysis: either

a near-optimal solution w to the primal SDP give a good answer µ̂w , or

a near-optimal solution to the dual SDP yields a new guess ν′ that is

closer to µ⋆ by a constant factor.
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Our Approach

Iteratively move ν closer to µ⋆ using the dual SDP,

until primal SDP has a good solution and we can output µ̂w .

bc

bcbc

bcbc
bc

bcbcbc

bc
bc

bc

bc

bc

bc
bc
bc

bc

bc
bc bc bc bc

bc bc

bc
bc

bc bc

bc

bc
bc bcbcbc

bc
bc bc bc bc

b

µ⋆

bν1

b
ν2

b
ν3

ν1: Dual

ν2: Dual

ν3: Primal
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Dual SDP

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
)

subject to w ∈∆N ,ε

Dual SDP (with parameter ν)

maximize Mean of the smallest (1 − ε)-fraction of ((Xi − ν)
⊺M(Xi − ν))

N
i=1

subject to M ⪰ 0, tr(M) ≤ 1

The dual SDP certifies that there are no good weights that can make the

spectral norm small.

If the solution is rank-one: M = yy⊺, then in the direction of y, the

variance is large no ma�er how we reweight the samples.

Intuition: When ν is far from µ⋆, y should align with (ν − µ⋆).
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Dual SDP

Why would the dual SDP pick the direction (ν − µ⋆)?

bc
bcbc

bcbcbc
bcbcbc

bcbcbc
bc
bcbc bcbc bc

bc bc bc bc bc bc bc
bc bc
bc bc
bc

bc
bc bcbcbc

bc
bc bc bcbc

b µ⋆

b ν

y′

y

M = yy⊤

y ≈ (ν − µ⋆)

Why is y better than y′?
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Conditions on the Good Samples

We require the following deterministic conditions on the good samples:

Concentration Bounds (for Sub-Gaussian Distributions)

For all w ∈∆N ,ε (G is the set of good samples):

∥∑

i∈G
wi(Xi − µ

⋆
)∥

2
≤ O(ε

√

log(1/ε)) =∶ δ1,

∥∑

i∈G
wi(Xi − µ

⋆
)(Xi − µ

⋆
)
⊺
− I∥

2
≤ O(ε log(1/ε)) =∶ δ2.

Removing εN samples does not a�ect the first/second moments too much.

This is the only place we use the sub-Gaussian assumption.
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Optimal Value of the SDPs

Lemma

When ∥ν − µ⋆∥2 ≥ Ω(β),

1 + 0.99 ∥ν − µ⋆∥22 ≤ OPTν ≤ 1 + 1.01 ∥ν − µ⋆∥22 .

Proof

One feasible primal solution is to set wi =
1
∣G∣ for all i ∈ G.

OPTν ≤ λmax (
N

∑

i=1
wi(Xi − ν)(Xi − ν)

⊺
) = max

∥y∥2=1
∑

i∈G
wi⟨Xi − ν,y⟩2

= max
∥y∥2=1

(∑

i∈G
wi⟨Xi − µ

⋆,y⟩2 + ⟨µ⋆ − ν,y⟩2 + 2⟨∑
i∈G

wi(Xi − µ
⋆
),y⟩⟨µ⋆ − ν,y⟩)

≤ max
∥y∥2=1

((1 + δ2) + ⟨µ⋆ − ν,y⟩2 + 2δ1⟨µ⋆ − ν,y⟩)

= (1 + δ2) + ∥µ⋆ − ν∥22 + 2δ1 ∥µ⋆ − ν∥2 (so β =

√

δ2 =
√

ε ln(1/ε).)
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When Primal SDP Has Good Solutions

Lemma (Good Primal Solutions⇒ Correct Mean)

For all w ∈∆N ,2ε, if ∥µ̂w − µ⋆∥2 ≥ Ω(δ), then for all ν ∈ Rd ,

λmax (
N

∑

i=1
wi(Xi − ν)(Xi − ν)

⊺
) ≥ 1 +Ω(δ2/ε) = 1 +Ω(β2).

Implication: if objective value of w is small with any ν, then µ̂w is close to µ⋆.

Proof sketch:

ν must be close to µ⋆, otherwise OPTν ≈ 1 + ∥ν − µ⋆∥22 is already large.

When ν is close to µ⋆, (Xi − ν)(Xi − ν)
⊺

is close to (Xi − µ
⋆
)(Xi − µ

⋆
)
⊺
.
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When Dual SDP Has Good Solutions

Lemma (Good Dual Solutions⇒ Be�er ν)

Fix an approximately optimal solution M to the dual SDP with parameter ν.

If the objective value of M is at least 1 +Ω(β2), then we can find ν′ ∈ Rd such

that ∥ν′ − µ⋆∥2 ≤
9
10 ∥ν − µ

⋆
∥2.

Intuitively, if the dual SDP throws away all the bad samples,

1+∥ν − µ⋆∥22 ≈ OPT ≈ EX∈G[(X − ν)⊺M(X − ν)] = ⟨M, I +(ν−µ⋆)(ν−µ⋆)⊺⟩.

Because tr(M) = 1, the top eigenvector of M aligns approx. with (ν − µ⋆).

We will move ν closer to ν′:

The top eigenvector of M tells us which direction ν should move.

The objective value OPTν tells us how far ν should move.
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When Dual SDP Has Good Solutions

The lemma shows that despite the error from

the errors in the concentration bounds, and

we are only solving the SDP approximately,

the top eigenvector of M still aligns approximately with (ν − µ⋆).

b
ν

b
µ⋆

b
ν′

r

v1

θ

b
ν′′

−v1
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Solving the SDPs Approximately

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
) subject to w ∈∆N ,ε

Packing/covering SDPs can be solved in nearly-linear time [JY’11, ALO’16, PTZ’16].

This is not a packing SDP, but we can flip the objective/constraints.

Packing SDP with parameters (ν, ρ)
maximize ∥w∥1 subject to 0 ≤ wi ≤

1
(1−ε)N ,∑i wi(ρXiX⊺

i ) ⪯ I

Binary search for ρ and check if max ∥w∥1 ≥ 1 (ρ⋆ = 1
OPTν

).

Need to handle bi-criteria approximations.
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Packing/covering SDPs can be solved in nearly-linear time [JY’11, ALO’16, PTZ’16].

This is not a packing SDP, but we can flip the objective/constraints.
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Full Algorithm

Algorithm 1: Robust Mean Estimation for Known Covariance Sub-Gaussian

Let ν = 1
N ∑

N
i=1 Xi be the empirical mean;

for i = 1 to O(log(d logN/ε)) do
Compute either

(i) a good solution w ∈ RN
for the primal SDP with parameters (ν, 2ε); or

(ii) a good solution M ∈ Rd×d
for the dual SDP with parameters (ν, ε);

if the objective value of w in primal SDP ≤ 1 + 400ε ln(1/ε) then
return the weighted empirical mean µ̂w = ∑

N
i=1wiXi ;

else
Move ν closer to µ⋆ using the top eigenvector of M .
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Summary

Distribution Error (δ) # of Samples (N) Runtime

Sub-Gaussian O(ε
√

log(1/ε)) O(d/δ2)
Õ(Nd/ε6)

Bounded Covariance O(

√

ε) Õ(d/δ2)

We hope our work will serve as a starting point for the design of faster

algorithms for high-dimensional robust estimation.
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Open Problems

Faster algorithms for other high-dimensional robust learning problems

(e.g., sparse mean estimation / sparse PCA)?

Can we avoid the poly(1/ε) in the runtime?

Robust covariance estimation in time Õ(Nd)/εO(1))?

Yu Cheng (Duke) Faster Robust Mean Estimation 21 / 21



Open Problems

Faster algorithms for other high-dimensional robust learning problems

(e.g., sparse mean estimation / sparse PCA)?

Can we avoid the poly(1/ε) in the runtime?

Robust covariance estimation in time Õ(Nd)/εO(1))?
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