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Mean Estimation

Mean Estimation

o Input: N samples {X;,..., Xy} drawn from NV (u*,I) on R%

@ Goal: Learn p*.

@ Empirical mean 77 = % >N, X; works:

|- p*|l, < € when N = Q(d/é?).
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Robust Mean Estimation

Definition (e-Corruption)

@ N samples are drawn i.i.d. from the ground-truth distribution D.
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Robust Mean Estimation

Definition (e-Corruption)

@ N samples are drawn i.i.d. from the ground-truth distribution D.

@ Adversary replaces eN samples with arbitrary points (after inspecting D,

the samples, and the algorithm).

Robust Mean Estimation

@ Input: an e-corrupted set of N samples {Xj, ..., Xy} drawn from an

unknown distribution D on R? with mean *.

@ Goal: Learn p* in £3-norm.
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Previous Work

Robustly learn p* given e-corrupted samples from N (u*, I):

Algorithm Error Guarantee Poly-Time?
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Previous Work
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Previous Work

Robustly learn 1* given e-corrupted samples from N (u*,I):

Algorithm Error (0) Runtime
Dimension Halving [LRv16] O(ey/logd) Q(Nd?) + SVD

Convex Programming [DkkLMS'16] | O(ey/log(1/e))  Ellipsoid Algorithm
Filtering [DKKLMS 16] O(ey/log(1/€)) Q(Nd?)
This paper O(ey/log(1/€)) O(Nd/e%)

All these algorithms have sample complexity N = O(d/d?).
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Our Results
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Distribution ‘ Error (6) # of Samples (N)  Runtime
Sub—Gau.ssian O(e\/log(1/e)) (~)(d/5z) (N <)
Bounded Covariance (X < I) O(V/e) 0(d/6*)

When € is constant, our algorithm has the best possible error guarantee,

sample complexity, and running time (up to polylogarithmic factors).

The € in runtime comes from packing/covering SDP solvers.
Suppose we can solve one packing/covering SDP in time T = T(N, d, ¢€).
Our runtime is O(Nd) + O(log?(d/e)) (T+d?%).
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Our Results

Distribution ‘ Error (6) # of Samples (N)  Runtime
Sub—Gau.ssian O(e/log(1/€)) 9(0]/52) O(NdJe)
Bounded Covariance (X < I) O(/¢) 0(d/5*)

Robust mean estimation under bounded covariance assumptions has been
used as a subroutine to obtain robust learners for a wide range of supervised

learning problems that can be phrased as stochastic convex programs.

Our result provides a faster implementation of such a subroutine, hence

yields faster robust algorithms for all these problems.
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Intuition: Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted

samples must introduce a large eigenvalue in a covariance-like matrix.

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 8/21



Intuition: Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted

samples must introduce a large eigenvalue in a covariance-like matrix.

Good Weights

minimize Amax(Zfil w,-(Xi—u*)(X,-—u*)T)
subjectto we Ay, (Tiwi=t1ando<wi< L)

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 8/21



Intuition: Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted

samples must introduce a large eigenvalue in a covariance-like matrix.

Good Weights

minimize Amax(Zfil w,-(Xi—u*)(X,-—u*)T)
subjectto we Ay, (Tiwi=t1ando<wi< L)

Lemma ([DKKLMS’16])

If we can find a near-optimal solution w, we can output [i,, = >; w;X;.

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 8/21



Intuition: Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted

samples must introduce a large eigenvalue in a covariance-like matrix.

Good Weights

minimize )\max(zli\il w,-(Xi—u*)(X,-—u*)T)
subject to WEAME (ZiWi=1and05Wi§ﬁ)

Lemma ([DKKLMS’16])

If we can find a near-optimal solution w, we can output [i,, = >; w;X;.

This looks like a packing SDP in w (which we can solve in nearly-linear time).
Except that ...

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 8/21



Intuition: Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted

samples must introduce a large eigenvalue in a covariance-like matrix.

Good Weights

minimize  Amax (2N wi(Xi— 1) (X — p*)7)
subjectto we Ay, (Tiwi=t1ando<wi< L)

Lemma ([DKKLMS’16])

If we can find a near-optimal solution w, we can output [i,, = >; w;X;.

This looks like a packing SDP in w (which we can solve in nearly-linear time).

Except that ... we do not know p*.
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Our Approach

Idea: guess the mean v and solve the SDP with parameter v.
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Our Approach

Idea: guess the mean v and solve the SDP with parameter v.

Primal SDP (with parameter v)

minimize  Amax (Zli\il wi(Xi - v)(Xi - V)T)

subjectto we Ay,

We give a win-win analysis: either
@ a near-optimal solution w to the primal SDP give a good answer fi,, or

@ a near-optimal solution to the dual SDP yields a new guess v/ that is

closer to u* by a constant factor.
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Our Approach

Iteratively move v closer to u* using the dual SDP,

until primal SDP has a good solution and we can output i,,.
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Our Approach

Iteratively move v closer to u* using the dual SDP,

until primal SDP has a good solution and we can output i,,.
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Dual SDP

Primal SDP (with parameter v)

minimize  Amax (SN, wi(Xi - v)(Xi - v)7)
subjectto we Ay,

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 11/21



Dual SDP

Primal SDP (with parameter v)

minimize  Amax (SN, wi(Xi - v)(Xi - v)7)
subjectto we Ay,

Dual SDP (with parameter v)

| A\

maximize Mean of the smallest (1 — €)-fraction of ((X; —v)"M(X; - 1/))5.11
subjectto M >0,tr(M) <1

A\
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Dual SDP

Primal SDP (with parameter v)
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subjectto M >0,tr(M) <1
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@ The dual SDP certifies that there are no good weights that can make the

spectral norm small.
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subjectto we Ay,

Dual SDP (with parameter v)

| \

maximize Mean of the smallest (1 — €)-fraction of ((X; —v)"M(X; - V))Zl
subjectto M >0,tr(M) <1

@ The dual SDP certifies that there are no good weights that can make the
spectral norm small.
@ If the solution is rank-one: M = yy', then in the direction of y, the

variance is large no matter how we reweight the samples.
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Dual SDP

Primal SDP (with parameter v)

minimize  Apax (Z}i\il wi(X; —v)(X; - V)T)
subjectto we Ay,

| \

Dual SDP (with parameter v)

maximize Mean of the smallest (1 — €)-fraction of ((X; —v)"M(X; - V))Zl
subjectto M >0,tr(M) <1

<

@ The dual SDP certifies that there are no good weights that can make the
spectral norm small.

@ If the solution is rank-one: M = yy', then in the direction of y, the
variance is large no matter how we reweight the samples.

@ Intuition: When v is far from p*, y should align with (v — p*).
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Dual SDP

Why would the dual SDP pick the direction (v — p*)?
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Dual SDP

Why would the dual SDP pick the direction (v — p*)?
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Conditions on the Good Samples

We require the following deterministic conditions on the good samples:

Concentration Bounds (for Sub-Gaussian Distributions)

For all w e AN7€ (G is the set of good samples):

Y wi(Xi—pt)

icG

>owi(Xi— ) (X - p) -1
icG

< O(ey/log(1/e)) =: 6y,

< O(elog(1/e)) =: 05.

2
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Conditions on the Good Samples

We require the following deterministic conditions on the good samples:

Concentration Bounds (for Sub-Gaussian Distributions)

For all w e AN7€ (G is the set of good samples):

> wi(Xi - p")

icG

Yowi(Xi— ) (X)) -1
ieG

< O(ey/log(1/e)) =: 6y,

< O(elog(1/e)) =: 05.

2

Removing eN samples does not affect the first/second moments too much.

This is the only place we use the sub-Gaussian assumption.

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 13/21




Optimal Value of the SDPs

When |lv - p*|, > Q(5),
1+0.99 v — p*|)2 < OPT, <1+ 1.01 v — p*|5.
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Optimal Value of the SDPs

Lemma

When v - p*|, > Q(5),
1+40.99 v — pu*|> < OPT, <1+ 1.01 v —p*|%.

|

Proof
One feasible primal solution is to set w; = |G\ forallie G.
N
OPTV S)\max (Z Wi(Xi—l/)(Xi—Z/)T) = max Zwl i~ U,y
i=1 Iyll=1ieG

= it (Z wilXi — ", )2+ (" = v, )+ 200 wi(Xi - ), y) et - v, y))

I¥l,=1 \jeG i€G

<”1}1)1”ax ((1+8) +{p" —v,y) +26,(p" - v,y))

= (1+8) + |u" =~ vl + 28 |u - vl (s0 B =/3, = /eln(1/e).)
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When Primal SDP Has Good Solutions

Lemma (Good Primal Solutions = Correct Mean)

For all w € Ay ac, if | — 1" |, > Q(6), then for all v e RY,

Hmse (iwi(Xi— v)(Xi— I/)T) >1+Q(6%/e) =1+ Q(5%).
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For all w € Ay ac, if | — 1" |, > Q(6), then for all v e RY,

s 2 6 )07 21 25) =1 249)

Implication: if objective value of w is small with any v, then 7., is close to p*.

Proof sketch:
o v must be close to yi*, otherwise OPT, ~ 1+ |v — u* |5 is already large.

@ When vis close to u*, (X; —v)(X;—v)" is close to (X; — ™) (X — ™) 7.
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When Dual SDP Has Good Solutions

Lemma (Good Dual Solutions = Better v)

Fix an approximately optimal solution M to the dual SDP with parameter v.
If the objective value of M is at least 1+ Q(3%), then we can find V' € R? such
that |/ - ', < 3 v - .
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Lemma (Good Dual Solutions = Better v)

Fix an approximately optimal solution M to the dual SDP with parameter v.
If the objective value of M is at least 1+ Q(3%), then we can find V' € R? such

that |/ — yi* |, < & | = i*

Intuitively, if the dual SDP throws away all the bad samples,
Lt o = " |2 5 OPT » Bxea[ (X - 1) TM(X = )] = (M, I+ (v—p*) (v "))
Because tr(M) = 1, the top eigenvector of M aligns approx. with (v — u*).

We will move v closer to v/':

@ The top eigenvector of M tells us which direction v should move.
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Fix an approximately optimal solution M to the dual SDP with parameter v.
If the objective value of M is at least 1+ Q(3%), then we can find V' € R? such

that |/ — yi* |, < & | = i*

Intuitively, if the dual SDP throws away all the bad samples,
Lt o = 13 5 OPT m Exea[ (X 1) TM(X = )] = (M, T+ (=) (v =),
Because tr(M) = 1, the top eigenvector of M aligns approx. with (v — u*).
We will move v closer to /":

@ The top eigenvector of M tells us which direction v should move.

@ The objective value OPT, tells us how far v should move.
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Solving the SDPs Approximately

Primal SDP (with parameter v)

minimize Amax (Zji\il wi(X; - v)(X; - V)T) subject to we Ay ¢
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Solving the SDPs Approximately

Primal SDP (with parameter v)

minimize Amax (Zji\il wi(X; - v)(X; - I/)T) subject to we Ay ¢

Packing/covering SDPs can be solved in nearly-linear time [Jy’11, ALO’16, PTZ’16].

This is not a packing SDP, but we can flip the objective/constraints.

Packing SDP with parameters (v, p)

maximize |wl, subject to 0 < w; < ﬁ, Yiwi(pXiX') <1
Binary search for p and check if max [w], > 1 (p* = 5pr).

Need to handle bi-criteria approximations.
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Full Algorithm

Algorithm 1: Robust Mean Estimation for Known Covariance Sub-Gaussian

Let v = % YN X; be the empirical mean;

for i=1to O(log(dlogN/e)) do
Compute either

(i) a good solution w € RN for the primal SDP with parameters (v, 2¢); or
(ii) a good solution M € R% for the dual SDP with parameters (v, €);
if the objective value of w in primal SDP < 1+ 400¢1n(1/¢) then
‘ return the weighted empirical mean [, = Zfil wiX;;
else
| Move v closer to ;1* using the top eigenvector of M.
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Summary

Distribution ‘ Error (0) # of Samples (N)  Runtime
Sub-Gaussian O(ey/log(1/€)) 0(d/§%) (N
Bounded Covariance O(\/¢) 0(d/6%) ‘
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Summary

Distribution ‘ Error (0) # of Samples (N)  Runtime
Sub-Gaussian O(ey/log(1/€)) 0(d/§%) (N
Bounded Covariance O(\/¢) 0(d/6%) ‘

We hope our work will serve as a starting point for the design of faster

algorithms for high-dimensional robust estimation.
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Open Problems

@ Faster algorithms for other high-dimensional robust learning problems

(e.g., sparse mean estimation / sparse PCA)?
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Open Problems

@ Faster algorithms for other high-dimensional robust learning problems

(e.g., sparse mean estimation / sparse PCA)?
@ Can we avoid the poly(1/e) in the runtime?

@ Robust covariance estimation in time O(Nd)/e?(1))?

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 21/21



