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UNSUPERVISED MACHINE LEARNING

In many applications of machine learning:

* Very large amounts of data
* Data mostly unlabeled — lacking useful/structural annotations

-3 0 5

Can we automatically discover interesting structure in unlabeled
data?



THE UNSUPERVISED LEARNING PROBLEM

Unknown R
g* samples

* |nput: sample generated by model with unknown 6*
* Goal: estimate parameters 6 so that ~ 6*

Question 1: Is there an efficient learning algorithm?

Main performance criteria:  q,estion 2: Are there

. Sample SIz€ tradeoffs between these
* Running time criteria?

 Robustness
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STATISTICAL QUERIES [KEARNS’ 93]

<£| X1,X2, -, Xm ~ D over X




STATISTICAL QUERIES [KEARNS’ 93]

/
7,);32-3 “l vy
|
T, i
SQ algorithm ) Vq

STATp(7) oracle

¢1:X > [-11]  |vy —Exple ()]l <7
T is tolerance of the query; 7 = 1/4/m

Problem P € SQCompl(qg, m):
If exists a SQ algorithm that solves P using g queries to

STAT, (t = 1/y/m)




POWER OF SQ ALGORITHMS

Restricted Model: Hope to prove unconditional computational lower
bounds.

Powerful Model: Wide range of algorithmic techniques in ML are
implementable using SQs’:

* PAC Learning: ACP, decision trees, linear separators, boosting.
* Unsupervised Learning: stochastic convex optimization, moment-
based methods, k~-means clustering, EM, ...

[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

Only known exception: Gaussian elimination over finite fields (e.g.,
learning parities).

For all problems in this talk, strongest known algorithms are SQ.



METHODOLOGY FOR SQ LOWER BOUNDS

Statistical Query Dimension:

* Fixed-distribution PAC Learning
[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95; ...]

* General Statistical Problems
[Feldman-Grigorescu-Reyzin-Vempala-Xiao’l3, ..., Feldman’16]

Pairwise correlation between D, and D, with respect to D:

xp (D1, D3) = ” D1(x)Dy(z)/D(x)dx — 1

Fact: Suffices to construct a large set of distributions that are nearly
uncorrelated.
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GAUSSIAN MIXTURE MODEL (GMM)

« GMM: Distribution on R¢ with probability density function
k
F=> wN (i, %)
i=1

* Extensively studied in statistics and TCS

Karl Pearson (1894)



LEARNING GMMS - PRIOR WORK (I)

Two Related Learning Problems
[ Parameter Estimation: Recover model parameters. ]

e Separation Assumptions: Clustering-based Techniques

[Dasgupta’99, Dasgupta-Schulman’00, Arora-Kanan’01,
Vempala-Wang’02, Achlioptas-McSherry’05,
Brubaker-Vempala’08]

Sample Complexity: poly(d, k) Y-
(Best Known) Runtime: poly(d, k)

* No Separation: Moment Method

[Kalai-Moitra-Valiant’10, Moitra-Valiant’10,
Belkin-Sinha’10, Hardt-Price’15]

Sample Complexity:  poly(d) - (1/7)°®
(Best Known) Runtime: (d/~y)?*)



LEARNING GMMS - PRIOR WORK (l1)

Density Estimation: Recover underlying distribution
(within statistical distance €).

[Feldman-O’Donnell-Servedio’05, Moitra-Valiant’10, Suresh-Orlitsky-Acharya-
Jafarpour’14, Hardt-Price’15, Li-Schmidt’15]

Sample Complexity: poly(d, k,1/¢)

(Best Known) Runtime: (d/€)?®

P
Fact: For separated GMMs, density estimation and parameter

estimation are equivalent. Therefore, poly(d, k,1/€) samples
suffice for both learning problems.




LEARNING GMMS - OPEN QUESTION

p
Summary: The sample complexity of density estimation for

k-GMM:s is poly(d, k). The sample complexity of parameter
g estimation for separated k-GMMs is poly(d, k) .

L Open Question: Is there a poly(d, k) time learning algorithm?




STATISTICAL QUERY LOWER BOUND FOR
LEARNING GMMS

/Theorem Suppose that d > poly(k). Any SQ algorithm that Iearn\
separated &-GMMs over R? to constant error requires either:
 SQ queries of accuracy
d—k/6
or

e At least s
oQ(d'/®) > 2k

\\many SQ queries. /

Take-away: Computational complexity of learning GMMs is
inherently exponential in dimension of latent space.
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ROBUST HIGH-DIMENSIONAL ESTIMATION

Can we develop learning/estimation algorithms that are
robust to a constant fraction of corruptions in the data?

/Contamination Model:
Let F be a family of high-dimensional distributions.
We say that a distribution F” is € - corrupted with
respect to /£ if there exists F' € F such that

dTv(F’,F) <eE.
.

~




ROBUSTLY LEARNING A GAUSSIAN

Basic Problem: Given an e - corrupted version F’ of an unknown
d-dimensional unknown mean Gaussian

N (p, I)
efficiently compute a hypothesis distribution A such that
dTV(HvN(,u'aI)) < 0(6) .

O(e) error is the information-theoretically best possible.



ROBUSTLY LEARNING A GAUSSIAN — PRIOR WORK

Basic Problem: Given an e - corrupted version F’ of an unknown
d-dimensional unknown mean Gaussian

N (p, I)
efficiently compute a hypothesis distribution A such that
dTV(HvN(,u'aI)) < 0(6) .

e Extensively studied in robust statistics since the 1960’s. Till
recently, known efficient estimators get error Q(e - Vd) .
* Recent Algorithmic Progress:

-- [Lai-Rao-Vempala’16] ( \/log 1/6 V log )

-- [D-Kamath-Kane-Li-Moitra-Stewart’16] 0, (6\/10g(1/€)) .




ROBUST LEARNING — OPEN QUESTION

Summary of Prior Work: There is a poly(d/e¢) time algorithm for
robustly learning A (y, I) within error O (e4/log(1/e)) .

Open Question: Is there a poly(d/e) time algorithm for robustly
learning N (u, I) within error o(e4/log(1/¢€))?
How about O(e) ?




STATISTICAL QUERY LOWER BOUND FOR
ROBUSTLY LEARNING A GAUSSIAN

ﬁeorem: Suppose d > polylog(1/€). Any SQ algorithm that
learns an € - corrupted Gaussian N (i, I) within statistical distance

O(ey/log(1/€)/M)

requires either:

 SQ queries of accuracy d= /6
or

e At least

JoUM?)
\\many SQ queries. /

Take-away: Any asymptotic improvement in error guarantee over
prior work requires super-polynomial time.
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SAMPLE COMPLEXITY OF ROBUST TESTING
High-Dimensional Hypothesis Testing

Simple mean-based algorithm with O(v/d/e?)samples.

Suppose we add corruptions to soundness case at rated < €.

Take-away: Robustness can dramatically increase the sample
complexity of an estimation task.
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GENERAL RECIPE FOR (SQ) LOWER BOUNDS

Our generic technique for proving SQ Lower Bounds:

e Step #1: Construct distribution P, that is standard Gaussian
in all directions except v.

* Step #2: Construct the univariate projection in thewv direction
so that it matches the first m moments of A(0,1)

4

* Step #3: Consider the family of instances D = {P, },




HIDDEN DIRECTION DISTRIBUTION

.

\
Definition: For a unit vector v and a univariate distribution with
density 4, consider the high-dimensional distribution
P,(z) = A(v- z)exp (—|lz — (v- z)v|3/2) /(2m) 172,
%
Example:
A P,(z)




GENERIC SQ LOWER BOUND

- N
Definition: For a unit vector v and a univariate distribution with

density 4, consider the high-dimensional distribution
P,(z) = A(v- z)exp (=[x — (v- z)v|3/2) /(2m) 172,

/Proposition: Suppose that: \

* A matches the first m moments of N'(0,1)
* We havedry(P,,P,/) > 26 aslongasv, v’are nearly
orthogonal.

Then any SQ algorithm that learns an unknowg Ev within error 0
requires either queries of accuracy d=™ or 9d*™ many queries.

€




WHY IS FINDING A HIDDEN DIRECTION HARD?

L Observation: Low-Degree Moments do not help.

* A matches the first m moments of N'(0, 1)
* The first m moments of P,, are identical to those of N (0, I)
« Degree-(m+1) moment tensor has 2(d™) entries.

[ Claim: Random projections do not help.

* To distinguish between P, and N(0, I), would need
exponentially many random projections.



ONE-DIMENSIONAL PROJECTIONS ARE ALMOST GAUSSIAN

' N
Key Lemma: Let O be the distribution of v’ - X, where X ~ P,,.
Then, we have that:

N X (Q,N(0,1)) < (v-v")2™ )y (4,N(0,1)) V
X ~ P,

v - X ~Q




PROOF OF KEY LEMMA (1)




PROOF OF KEY LEMMA (1)

X ~P,
v X ~Q




PROOF OF KEY LEMMA (I1)
Qz") = / A(z' cos 0 + 9 sin0)G(z' sin 6 — ' cos 0)dy’
R

= (UsA)(")

where Uy isthe operatorover f: R — R

Ugf(x) := f(xcosf + ysinf)G(xsinf — y cos 0)dy
yER

Gaussian Noise (Ornstein-Uhlenbeck)
Operator




EIGENFUNCTIONS OF ORNSTEIN-UHLENBECK OPERATOR

Linear Operator Uy acting on functions f: R — R

Ugf(x) := f(xcosf + ysinf)G(xsinf — y cos 0)dy

y€ER

E Fact (Mehler’'66): Ug(He;G)(x) = cos'(0)He;(x)G(x)

* He;(x) denotes the degree-i Hermite polynomial.
* Note that {He;(xz)G(z)/Vi!}i>0 are orthonormal with respect
to the inner product
= Jg f(2)9(2)/G(z)dz



PROOF OF KEY LEMMA (IIl)

We can write:

A(x) = Z a;He;(2)G(z)/Vi!
i=0

where

a; = Exoa | Hei(X)/Vil]

Since A4 has the same first m moments as A(0,1)

ap=1land a; =0, for 1 <i:<m

Therefore

Az)=G(z)+ Y  aHe(z)G(z)/Vil

1=m-+1



PROOF OF KEY LEMMA (IIl)

Since 4 has the same first m moments as N(O 1)

Az ) + Z a;He;(z)G(z)/ V!

t=m-+1
Therefore

(AN (0,1)) = / (A(z) — G(x))?/G(z)da



PROOF OF KEY LEMMA (IIl)

Since 4 has the same first m moments WIthN(O 1)

Az ) + Z a;He;(z)G(z)/ V!

t=m—+1

Using Mehler’s lemma:

UgA(x) = G(x) + f: a; cos’ OHe; (z)G(z)/ V4!
and i=m+l

oo

Y2 (UgA,N(0,1)) = Z a? cos> @

1=m-+1

oo
< cos?(mt1l) g Z a;
1=m-+1

= cos2™ D) 9. x2(4, N(0,1))



GENERIC SQ LOWER BOUND

- N
Definition: For a unit vector v and a univariate distribution with

density 4, consider the high-dimensional distribution
P,(z) = A(v- z)exp (=[x — (v- z)v|3/2) /(2m) D72,

\

/Proposition: Suppose that: \

* A matches the first m moments of N'(0,1)
* We havedry(P,,P,/) > 26 aslongasv, v’are nearly
orthogonal.

Then any SQ algorithm that learns an unknowﬂnlf)’v within error 0
requires either queries of accuracy d~"or 9d*™ many queries.

€ 4




PROOF OF GENERIC SQ LOWER BOUND

e Suffices to construct a large set of distributions that are
nearly uncorrelated.
* Pairwise correlation between D, and D, with respect to
D:
xp(D1,D3) = . D1(x)Ds(z)/D(x)dx — 1

Two Main Ingredients:
Correlation Lemma:

|XN(O,I)(P’U)P'U/)| <|v -v’|m+1x2(A,N(O, 1))

Packing Argument: There exists a set S of 22(d/*) unit
vectors on R? with pairwise inner product O(1/d'/4)



PROOF OF CORRELATION LEMMA
Let 6 = arccos(v - v')

e Correlation is two-dimensional:
XN ©0,1)(Pv, Pu) = xn(0,1)(4, UgA)

* Relate correlation to chi-squared distance:
Xn(0,1) (4, UsA)| < v/Xx2(A,N(0,1)) - x3(Ug A, N (0, 1))

By Key Lemma, noise operator makes A4 closer to Gaussian:

XZ(UGAa N(Oa 1)) < COS2(m+1) 0 - X2 (A7 N(07 1))

Therefore,
|XN(O,I) (Pva P’U’)‘ < |’U : ’U’|m+1X2(A, N(Oa 1))
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APPLICATION: SQ LOWER BOUND FOR GMMS (l)

Want to show:

( Theorem: Any SQ algorithm that learns separated ~-GMMs over R? 3

to constant error requires either SQ queries of accuracyd_"“/6

orat least 2U@"®) > 42k many SQ queries. )

by using our generic proposition:

/Proposition: Suppose that: \
* A matches the first m moments of A/(0,1)

* We havedry (P, Py) > 20 aslongasv, v’are nearly
orthogonal.

Then any SQ algorithm that learns an unknowgrlll)?v within error 0
krequires either queries of accuracy d—™ or 2¢ " many queries. /




APPLICATION: SQ LOWER BOUND FOR GMMS (lI)

/Proposition: Suppose that: \
* A matches the first m moments of A/(0,1)

* We havedry(P,,P,) > 20 aslongasv, v’are nearly
orthogonal.

Then any SQ algorithm that learns an unknoanva within error 0
\requires either queries of accuracy d—™ or 2¢ " many queries. /

4 Lemma: There exists a univariate distribution 4 that is a &--GMM )
with components 4; such that:
* A agrees with A/(0,1) on the first 2k-1 moments.
* Each pair of components are separated.

. * Whenever v and v’ are nearly orthogonal drv(Py,Py) >1/2. -




APPLICATION: SQ LOWER BOUND FOR GMMS (1)

4 Lemma: There exists a univariate distribution 4 that is a &-GMM )
with components 4. such that:
* A agrees with A/(0,1) on the first 2k-1 moments.
* Each pair of components are separated.

. * Whenever v and v’ are nearly orthogonal drv(Py,Py) >1/2. -

A




APPLICATION: SQ LOWER BOUND FOR GMMS (1)

High-Dimensional Distributions P, look like “parallel pancakes”:

Efficiently learnable for &=2. [Brubaker-Vempala’08]
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FURTHER RESULTS

Unified technique yielding a range of applications.
SQ Lower Bounds:

* Learning GMMs

* Robustly Learning a Gaussian

* Robust Covariance Estimation in Spectral Norm:
“Any efficient SQ algorithm requires Q(dz) samples.”
* Robust £-Sparse Mean Estimation:
“Any efficient SQ algorithm requires Q(k? + k log d) samples.”

Sample Complexity Lower Bounds
* Robust Gaussian Mean Testing

* Testing Spherical 2-GMMs: Distinguishing between N (0,1) and
(1/2)N (p1,I) + (1/2)N (p2, I) requires (d) samples.
* Sparse Mean Testing



APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Unified technique yielding a range of applications

Learning Problem Upper Bound SQ Lower Bound

Robust Gaussian Mean Error: 1/2 Runtime Lower Bound:
Estimation O(elog™“(1/e))
[DKKLMS'16] poly (M)
Robust Gaussian Error: . .
Covariance Estimation O(elog(1/¢)) for factor M improvement in
[DKKLMS'16] error.
Learning k~-GMMs Runtime: Runtime Lower Bound:
. . dg(k) Q(k
(without noise) 482 (k)
[MV’10, BS’10]
Robust k-Sparse Mean Sample size: If sample size is O(k1°99)
Estimation O(k2 log d) runtime lower ts)]%)nd:
[Li’17, DBS'17] dk
Robust Covariance Sample size: If sample size is O(d1°99)
Estimation in Spectral O(d2) runtime lower bound:

Norm [DKKLMS’16] 0d?V



APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Unified technique yielding a range of applications

Learning Problem Upper Bound SQ Lower Bound

Robust Gaussian Mean Error: 1/2 Factor M improvement in error
Estimation O(G log (1/6)) requires either accuracy
[DKKLMS’16] T < d—Poly(M)
Robust Gaussian Error: o 0d®(D)
Covariance Estimation O(elog(1/¢))
[DKKLMS’16] statistical queries (SQs).
Learning k-GMMs Runtime: k) Either accuracy 7 < d—F
(without noise) d’ D
[MV’10, BS’10] or 247 sQs.
Robust A-Sparse Mean Sample size: Either accuracy 7 < k=99
Estimation O(k2 log d) o)
[Li"17, DBS’17] or d¥ " sQs.
Robust Covariance Sample size: Either accuracy 7 < T
Estimation in Spectral O(d?)

NG [DKKLMS’16] or 24°% 5.
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SUMMARY AND FUTURE DIRECTIONS

* General Technique to Prove SQ Lower Bounds

* |Implications for a Range of Unsupervised Estimation Problems

* Robustness can make high-dimensional estimation harder
computationally and information-theoretically.

Future Directions:

* Further Applications of our Framework
e Understand the Power of SQ Algorithms
* Alternative Evidence of Computational Hardness?

 Deeper Understanding of Intractability in Unsupervised Learning

Thanks! Any Questions?



APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Learning Problem SQ Lower Bound

Robust Gaussian Mean Estimation One-dimensional distribution
A matches first M moments of N(0, 1).
Robust Gaussian Covariance Estimation (Legendre polynomials)
Learning k~-GMMs A matches 2k-1 moments of N(0, 1).

(without noise) (Gaussian-Hermite curvature)



GENERAL RECIPE FOR TESTING LOWER BOUNDS

Our generic technique for proving Testing Lower Bounds:

e Step #1: Construct distribution P, that is standard Gaussian
in all directions except v.

* Step #2: Construct the univariate projection in thewv direction
so that it matches the first moments of A(0,1)

* Step #3: Consider the family of instances D = {P, },

4




GENERIC TESTING LOWER BOUND

Definition: For a unit vector v and a univariate distribution with
density 4, consider the high-dimensional distribution

P,(z) = A(v-z)exp (|l — (v- z)o][3/2) /(2m)@ /2.

Proof crucially exploits correlation lemma.



HIGH-DIMENSIONAL GAUSSIAN MEAN TESTING

Gaussian Mean Testing

Distinguish between:

e Completeness: D =N (0,1)
 Soundness: D =N(u,I) with||p|2 > €

Algorithm:

* Draw k = O(v/d/€e?) samples X1, ..., Xy from D

¢+ let Z=3"  X;/Vk and T = d+ €%k/2

e If||Z||2 < T, then output “YES”. Otherwise, output “NO”.

Analysis: If D = N(u, I) then Z ~ N (uvk, I)
Therefore,
E [||Z]l3] = d+Ellul3 and Var [||Z||3] = O(d + k| p3)
So, if
kllpll3 > vd

the algorithm distinguishes between the two cases.



HIGH-DIMENSIONAL GAUSSIAN MEAN TESTING

Why does mean-based algorithm fail with noise?
Let 6 = €¢/100.

Consider

A=(1-8N(e,1) + 6N (—(1 = 6)¢/5,1)

Mean 0 and x%(4,N(0,1)) = O(€?).



PROOF OF GENERIC TESTING LOWER BOUND
Suffices to show that

X2(QN7N(07[)N) < 1/3
when d

V< BANO,D)

Can calculate

@ NODM +1= [ [ 1+ xwonPuPu) ¥ ddo
< // (1 + v -v'|*x? (4, N (0, 1)))N dv’ dv

Analysis of the distribution of the angle between two random
vectors.



