Statistical Query Lower Bounds for High-Dimensional Unsupervised Learning

Ilias Diakonikolas (USC)

(based on joint work D. Kane and A. Stewart)

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Extensions

Part IV: Summary and Conclusions

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

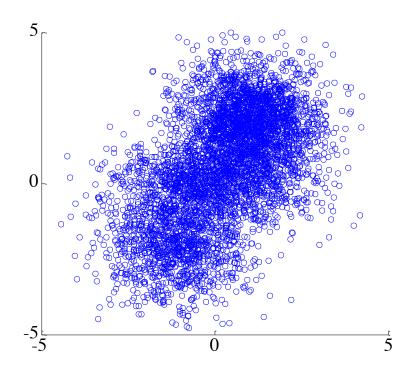
Part III: Extensions

Part IV: Summary and Conclusions

UNSUPERVISED MACHINE LEARNING

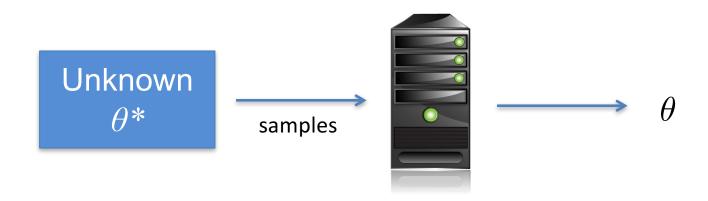
In many applications of machine learning:

- Very large amounts of data
- Data mostly unlabeled lacking useful/structural annotations



Can we automatically discover interesting structure in unlabeled data?

THE UNSUPERVISED LEARNING PROBLEM



- Input: sample generated by model with unknown θ^*
- *Goal*: estimate parameters θ so that $\theta \approx \theta^*$

Question 1: Is there an *efficient* learning algorithm?

Main performance criteria:

- Sample size
- Running time
- Robustness

Question 2: Are there tradeoffs between these criteria?

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Extensions

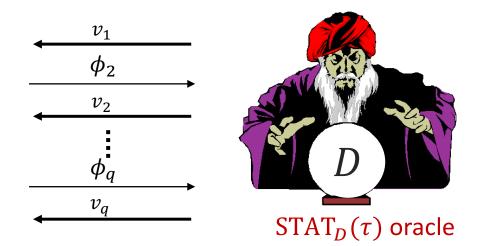
Part IV: Summary and Conclusions

STATISTICAL QUERIES [KEARNS' 93]

$$x_1, x_2, \dots, x_m \sim D \text{ over } X$$

STATISTICAL QUERIES [KEARNS' 93]

SQ algorithm



$$\phi_1 \colon X \to [-1,1] \quad |v_1 - \mathbf{E}_{x \sim D}[\phi_1(x)]| \le \tau$$
 τ is tolerance of the query; $\tau = 1/\sqrt{m}$

Problem $P \in SQCompl(q, m)$:

If exists a SQ algorithm that solves P using q queries to $STAT_D(\tau = 1/\sqrt{m})$

POWER OF SQ ALGORITHMS (?)

Restricted Model: Hope to prove unconditional computational lower bounds.

Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs*:

- PAC Learning: AC⁰, decision trees, linear separators, boosting.
- Unsupervised Learning: stochastic convex optimization, moment-based methods, k-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM'17]

Only known exception: Gaussian elimination over finite fields (e.g., learning parities).

For all problems in this talk, strongest known algorithms are SQ.

METHODOLOGY FOR SQ LOWER BOUNDS

Statistical Query Dimension:

- Fixed-distribution PAC Learning
 [Blum-Furst-Jackson-Kearns-Mansour-Rudich'95; ...]
- General Statistical Problems
 [Feldman-Grigorescu-Reyzin-Vempala-Xiao'13, ..., Feldman'16]

Pairwise correlation between D_1 and D_2 with respect to D:

$$\chi_D(D_1, D_2) := \int_{\mathbb{R}^d} D_1(x) D_2(x) / D(x) dx - 1$$

Fact: Suffices to construct a large set of distributions that are *nearly* uncorrelated.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Extensions

Part IV: Summary and Conclusions

THIS TALK

General Technique for SQ Lower Bounds:
Leads to Tight Lower Bounds
for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

- Learning Gaussian Mixture Models (GMMs)
- Robustly Learning a Gaussian
- Robustly Testing a Gaussian
- Statistical-Computational Tradeoffs

THIS TALK

General Technique for SQ Lower Bounds:
Leads to Tight Lower Bounds
for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

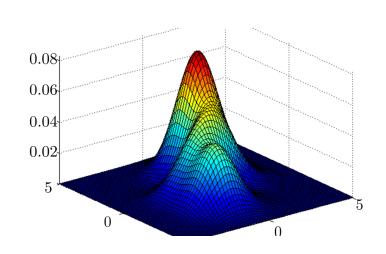
- Learning Gaussian Mixture Models (GMMs)
- Robustly Learning a Gaussian
- Robustly Testing a Gaussian
- Statistical-Computational Tradeoffs

GAUSSIAN MIXTURE MODEL (GMM)

• GMM: Distribution on \mathbb{R}^d with probability density function

$$F = \sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \Sigma_i)$$

Extensively studied in statistics and TCS



Karl Pearson (1894)

LEARNING GMMS - PRIOR WORK (I)

Two Related Learning Problems

Parameter Estimation: Recover model parameters.

Separation Assumptions: Clustering-based Techniques

[Dasgupta'99, Dasgupta-Schulman'00, Arora-Kanan'01, Vempala-Wang'02, Achlioptas-McSherry'05, **Brubaker-Vempala'08**]

poly(d, k)**Sample Complexity:** (Best Known) Runtime: poly(d, k)

No Separation: Moment Method

[Kalai-Moitra-Valiant'10, Moitra-Valiant'10, Belkin-Sinha'10, Hardt-Price'15]

(Best Known) Runtime: $poly(d) \cdot (1/\gamma)^{\Theta(k)}$

LEARNING GMMS - PRIOR WORK (II)

Density Estimation: Recover underlying distribution (within statistical distance ϵ).

[Feldman-O'Donnell-Servedio'05, Moitra-Valiant'10, Suresh-Orlitsky-Acharya-Jafarpour'14, Hardt-Price'15, Li-Schmidt'15]

Sample Complexity: $poly(d, k, 1/\epsilon)$

(Best Known) Runtime: $(d/\epsilon)^{\Omega(k)}$

Fact: For separated GMMs, density estimation and parameter estimation are equivalent. Therefore, $poly(d, k, 1/\epsilon)$ samples suffice for both learning problems.

LEARNING GMMS – OPEN QUESTION

Summary: The sample complexity of density estimation for k-GMMs is $\operatorname{poly}(d,k)$. The sample complexity of parameter estimation for $separated\ k$ -GMMs is $\operatorname{poly}(d,k)$.

Open Question: Is there a poly(d, k) **time** learning algorithm?

STATISTICAL QUERY LOWER BOUND FOR LEARNING GMMS

Theorem: Suppose that $d \ge \operatorname{poly}(k)$. Any SQ algorithm that learns separated k-GMMs over \mathbb{R}^d to constant error requires either:

SQ queries of accuracy

$$d^{-k/6}$$

or

At least

$$2^{\Omega(d^{1/8})} > d^{2k}$$

many SQ queries.

Take-away: Computational complexity of learning GMMs is inherently exponential in **dimension of latent space**.

THIS TALK

General Technique for SQ Lower Bounds:
Leads to Tight Lower Bounds
for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

- Learning Gaussian Mixture Models (GMMs)
- Robustly Learning a Gaussian
- Robustly Testing a Gaussian
- Statistical-Computational Tradeoffs

ROBUST HIGH-DIMENSIONAL ESTIMATION

Can we develop learning/estimation algorithms that are **robust** to a constant fraction of **corruptions** in the data?

Contamination Model:

Let $\mathcal F$ be a family of high-dimensional distributions. We say that a distribution F' is ϵ - corrupted with respect to $\mathcal F$ if there exists $F\in \mathcal F$ such that $d_{\mathrm{TV}}(F',F) \leq \epsilon \ .$

ROBUSTLY LEARNING A GAUSSIAN

Basic Problem: Given an ϵ - corrupted version F' of an unknown d-dimensional unknown mean Gaussian

$$\mathcal{N}(\mu, I)$$

efficiently compute a hypothesis distribution H such that

$$d_{\mathrm{TV}}(H, \mathcal{N}(\mu, I)) \leq O(\epsilon)$$
.

 $O(\epsilon)$ error is the information-theoretically best possible.

ROBUSTLY LEARNING A GAUSSIAN – PRIOR WORK

Basic Problem: Given an ϵ - corrupted version F' of an unknown d-dimensional unknown mean Gaussian

$$\mathcal{N}(\mu, I)$$

efficiently compute a hypothesis distribution H such that

$$d_{\mathrm{TV}}(H, \mathcal{N}(\mu, I)) \leq O(\epsilon)$$
.

- Extensively studied in robust statistics since the 1960's. Till recently, known efficient estimators get error $\Omega(\epsilon \cdot \sqrt{d})$.
- Recent Algorithmic Progress:
 - -- [Lai-Rao-Vempala'16]

$$O(\epsilon \sqrt{\log(1/\epsilon)} \cdot \sqrt{\log d})$$
.

-- [D-Kamath-Kane-Li-Moitra-Stewart'16] $O(\epsilon \sqrt{\log(1/\epsilon)})$.

ROBUST LEARNING – OPEN QUESTION

Summary of Prior Work: There is a $\operatorname{poly}(d/\epsilon)$ time algorithm for robustly learning $\mathcal{N}(\mu,I)$ within error $O\left(\epsilon\sqrt{\log(1/\epsilon)}\right)$.

Open Question: Is there a $\operatorname{poly}(d/\epsilon)$ time algorithm for robustly learning $\mathcal{N}(\mu,I)$ within error $o(\epsilon\sqrt{\log(1/\epsilon)})$? How about $O(\epsilon)$?

STATISTICAL QUERY LOWER BOUND FOR ROBUSTLY LEARNING A GAUSSIAN

Theorem: Suppose $d \geq \operatorname{polylog}(1/\epsilon)$. Any SQ algorithm that learns an ϵ - corrupted Gaussian $\mathcal{N}(\mu,I)$ within statistical distance error $O(\epsilon \sqrt{\log(1/\epsilon)}/M)$

requires either:

• SQ queries of accuracy $d^{-M/6}$

or

At least

$$d^{\Omega(M^{1/2})}$$

many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over prior work requires super-polynomial time.

THIS TALK

General Technique for SQ Lower Bounds:
Leads to Tight Lower Bounds
for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

- Learning Gaussian Mixture Models (GMMs)
- Robustly Learning a Gaussian
- Robustly Testing a Gaussian
- Statistical-Computational Tradeoffs

SAMPLE COMPLEXITY OF ROBUST TESTING

High-Dimensional Hypothesis Testing

Gaussian Mean Testing

Distinguish between:

• Completeness: $D = \mathcal{N}(0, I)$

• Soundness: $D = \mathcal{N}(\mu, I)$ with $\|\mu\|_2 \ge \epsilon$

Simple mean-based algorithm with $O(\sqrt{d}/\epsilon^2)$ samples.

Suppose we add corruptions to soundness case at rate $\delta \ll \epsilon$.

Theorem

Sample complexity of robust Gaussian mean testing is $\Omega(d)$.

Take-away: Robustness can dramatically increase the sample complexity of an estimation task.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Extensions

Part IV: Summary and Conclusions

GENERAL RECIPE FOR (SQ) LOWER BOUNDS

Our generic technique for proving SQ Lower Bounds:

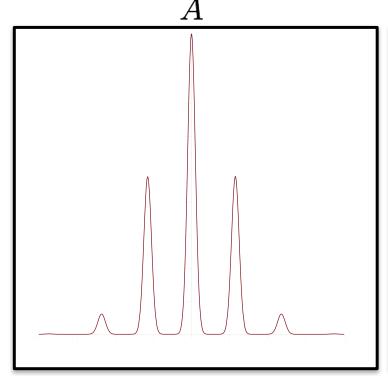
- Step #1: Construct distribution \mathbf{P}_v that is standard Gaussian in all directions except v.
- Step #2: Construct the univariate projection in the v direction so that it matches the first m moments of $\mathcal{N}(0,1)$
- Step #3: Consider the family of instances $\mathcal{D} = \{\mathbf{P}_v\}_v$

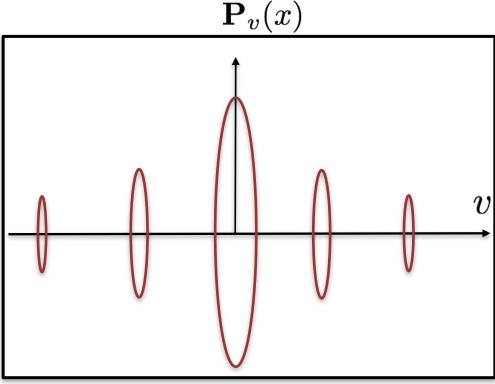
HIDDEN DIRECTION DISTRIBUTION

Definition: For a unit vector v and a univariate distribution with density A, consider the high-dimensional distribution

$$\mathbf{P}_{v}(x) = A(v \cdot x) \exp\left(-\|x - (v \cdot x)v\|_{2}^{2}/2\right) / (2\pi)^{(d-1)/2}.$$

Example:





GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution with density A, consider the high-dimensional distribution

$$\mathbf{P}_{v}(x) = A(v \cdot x) \exp\left(-\|x - (v \cdot x)v\|_{2}^{2}/2\right) / (2\pi)^{(d-1)/2}.$$

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v, v are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

WHY IS FINDING A HIDDEN DIRECTION HARD?

Observation: Low-Degree Moments do not help.

- A matches the first m moments of $\mathcal{N}(0,1)$
- The first m moments of \mathbf{P}_v are identical to those of $\mathcal{N}(0,I)$
- Degree-(m+1) moment tensor has $\Omega(d^m)$ entries.

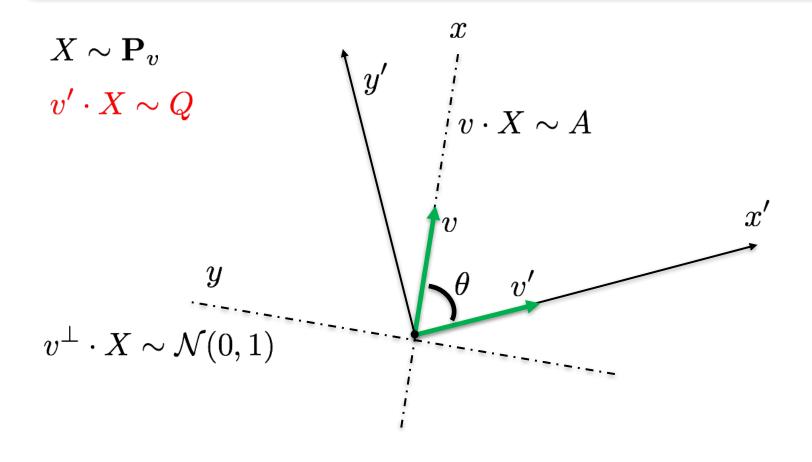
Claim: Random projections do not help.

• To distinguish between \mathbf{P}_v and $\mathcal{N}(0,I)$, would need exponentially many random projections.

ONE-DIMENSIONAL PROJECTIONS ARE ALMOST GAUSSIAN

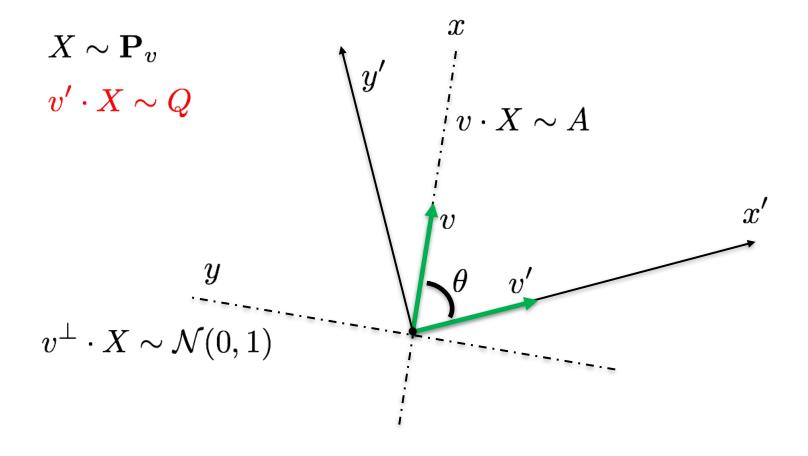
Key Lemma: Let Q be the distribution of $v' \cdot X$, where $X \sim \mathbf{P}_v$. Then, we have that:

$$\chi^2(Q, \mathcal{N}(0,1)) \le (v \cdot v')^{2(m+1)} \chi^2(A, \mathcal{N}(0,1))$$



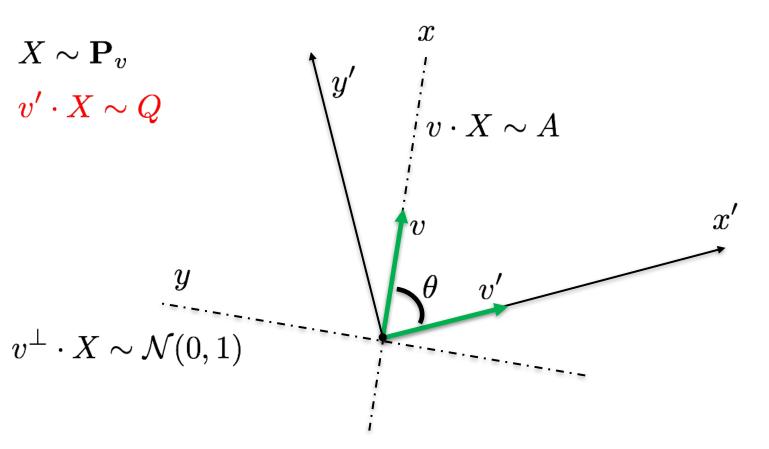
PROOF OF KEY LEMMA (I)

$$Q(x') = \int_{\mathbb{R}} A(x)G(y)dy'$$



PROOF OF KEY LEMMA (I)

$$Q(x') = \int_{\mathbb{R}} A(x)G(y)dy'$$
$$= \int_{\mathbb{R}} A(x'\cos\theta + y'\sin\theta)G(x'\sin\theta - y'\cos\theta)dy'$$



PROOF OF KEY LEMMA (II)

$$Q(x') = \int_{\mathbb{R}} A(x'\cos\theta + y'\sin\theta)G(x'\sin\theta - y'\cos\theta)dy'$$
$$= (U_{\theta}A)(x')$$

where U_{θ} is the operator over $f: \mathbb{R} \to \mathbb{R}$

$$U_{\theta}f(x) := \int_{y \in \mathbb{R}} f(x\cos\theta + y\sin\theta)G(x\sin\theta - y\cos\theta)dy$$

Gaussian Noise (Ornstein-Uhlenbeck)
Operator

EIGENFUNCTIONS OF ORNSTEIN-UHLENBECK OPERATOR

Linear Operator $\ U_{ heta}$ acting on functions $\ f: \mathbb{R}
ightarrow \mathbb{R}$

$$U_{\theta}f(x) := \int_{y \in \mathbb{R}} f(x\cos\theta + y\sin\theta)G(x\sin\theta - y\cos\theta)dy$$

Fact (Mehler'66): $U_{\theta}(He_iG)(x) = \cos^i(\theta)He_i(x)G(x)$

- $He_i(x)$ denotes the degree-i Hermite polynomial.
- Note that $\{He_i(x)G(x)/\sqrt{i!}\}_{i\geq 0}$ are orthonormal with respect to the inner product

$$\langle f, g \rangle = \int_{\mathbb{R}} f(x)g(x)/G(x)dx$$

PROOF OF KEY LEMMA (III)

We can write:

$$A(x) = \sum_{i=0}^{\infty} a_i He_i(x) G(x) / \sqrt{i!}$$

where

$$a_i = \mathbf{E}_{X \sim A} \left[He_i(X) / \sqrt{i!} \right]$$

Since A has the same first m moments as $\mathcal{N}(0,1)$

$$a_0 = 1$$
 and $a_i = 0$, for $1 \le i \le m$

Therefore

$$A(x) = G(x) + \sum_{i=m+1}^{\infty} a_i He_i(x)G(x)/\sqrt{i!}$$

PROOF OF KEY LEMMA (III)

Since A has the same first m moments as $\mathcal{N}(0,1)$

$$A(x) = G(x) + \sum_{i=m+1}^{\infty} a_i He_i(x)G(x)/\sqrt{i!}$$

Therefore

$$\chi^{2}(A, \mathcal{N}(0, 1)) = \int_{\mathbb{R}} (A(x) - G(x))^{2} / G(x) dx$$
$$= \sum_{i=m+1}^{\infty} a_{i}^{2}$$

PROOF OF KEY LEMMA (III)

Since A has the same first m moments with $\mathcal{N}(0,1)$

$$A(x) = G(x) + \sum_{i=m+1}^{\infty} a_i He_i(x)G(x)/\sqrt{i!}$$

Using Mehler's lemma:

and

$$U_{\theta}A(x) = G(x) + \sum_{i=m+1}^{\infty} a_i \cos^i \theta He_i(x)G(x)/\sqrt{i!}$$

$$\chi^{2}(U_{\theta}A, \mathcal{N}(0, 1)) = \sum_{i=m+1}^{\infty} a_{i}^{2} \cos^{2i} \theta$$

$$\leq \cos^{2(m+1)} \theta \sum_{i=m+1}^{\infty} a_{i}^{2}$$

$$= \cos^{2(m+1)} \theta \cdot \chi^{2}(A, N(0, 1))$$

GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution with density A, consider the high-dimensional distribution

$$\mathbf{P}_{v}(x) = A(v \cdot x) \exp\left(-\|x - (v \cdot x)v\|_{2}^{2}/2\right) / (2\pi)^{(d-1)/2}.$$

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v, v are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

PROOF OF GENERIC SQ LOWER BOUND

- Suffices to construct a large set of distributions that are nearly uncorrelated.
- Pairwise correlation between D_1 and D_2 with respect to D:

$$\chi_D(D_1, D_2) := \int_{\mathbb{R}^d} D_1(x) D_2(x) / D(x) dx - 1$$

Two Main Ingredients:

Correlation Lemma:

$$|\chi_{N(0,I)}(\mathbf{P}_v,\mathbf{P}_{v'})| \le |v\cdot v'|^{m+1}\chi^2(A,N(0,1))$$

Packing Argument: There exists a set S of $2^{\Omega(d^{1/4})}$ unit vectors on \mathbb{R}^d with pairwise inner product $O(1/d^{1/4})$

PROOF OF CORRELATION LEMMA

Let
$$\theta = \arccos(v \cdot v')$$

Correlation is two-dimensional:

$$\chi_{N(0,I)}(\mathbf{P}_v, \mathbf{P}_{v'}) = \chi_{N(0,1)}(A, U_{\theta}A)$$

Relate correlation to chi-squared distance:

$$|\chi_{N(0,1)}(A, U_{\theta}A)| \le \sqrt{\chi^2(A, N(0,1)) \cdot \chi^2(U_{\theta}A, N(0,1))}$$

• By Key Lemma, noise operator makes A closer to Gaussian:

$$\chi^2(U_\theta A, N(0,1)) \le \cos^{2(m+1)} \theta \cdot \chi^2(A, N(0,1))$$

Therefore,

$$|\chi_{N(0,I)}(\mathbf{P}_v,\mathbf{P}_{v'})| \le |v\cdot v'|^{m+1}\chi^2(A,N(0,1))$$

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Application: Learning GMMs

Part III: Extensions

Part IV: Summary and Conclusions

APPLICATION: SQ LOWER BOUND FOR GMMS (I)

Want to show:

Theorem: Any SQ algorithm that learns separated k-GMMs over \mathbb{R}^d to constant error requires either SQ queries of accuracy $d^{-k/6}$ or at least $2^{\Omega(d^{1/8})} \geq d^{2k}$ many SQ queries.

by using our generic proposition:

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v,v are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

APPLICATION: SQ LOWER BOUND FOR GMMS (II)

Proposition: Suppose that:

- A matches the first m moments of $\mathcal{N}(0,1)$
- We have $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'})>2\delta$ as long as v,v' are nearly orthogonal.

Then any SQ algorithm that learns an unknown \mathbf{P}_v within error δ requires either queries of accuracy d^{-m} or $2^{d^{\Omega(1)}}$ many queries.

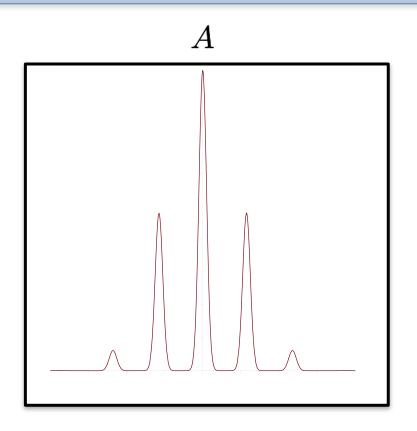
Lemma: There exists a univariate distribution A that is a k-GMM with components A_i such that:

- A agrees with $\mathcal{N}(0,1)$ on the first 2k-1 moments.
- Each pair of components are separated.
- Whenever v and v are nearly orthogonal $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'}) \geq 1/2$.

APPLICATION: SQ LOWER BOUND FOR GMMS (III)

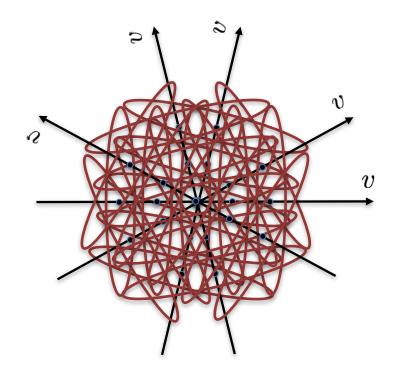
Lemma: There exists a univariate distribution A that is a k-GMM with components A_i such that:

- A agrees with $\mathcal{N}(0,1)$ on the first 2k-1 moments.
- Each pair of components are separated.
- Whenever v and v are nearly orthogonal $d_{\mathrm{TV}}(\mathbf{P}_v,\mathbf{P}_{v'}) \geq 1/2$.



APPLICATION: SQ LOWER BOUND FOR GMMS (III)

High-Dimensional Distributions P_v look like "parallel pancakes":



Efficiently learnable for k=2. [Brubaker-Vempala'08]

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Extensions

Part IV: Summary and Conclusions

FURTHER RESULTS

Unified technique yielding a range of applications.

SQ Lower Bounds:

- Learning GMMs
- Robustly Learning a Gaussian
- Robust Covariance Estimation in Spectral Norm: "Any efficient SQ algorithm requires $\Omega(d^2)$ samples."
- Robust k-Sparse Mean Estimation: "Any efficient SQ algorithm requires $\Omega(k^2+k\log d)$ samples."

Sample Complexity Lower Bounds

- Robust Gaussian Mean Testing
- Testing Spherical 2-GMMs: Distinguishing between $\mathcal{N}(0,I)$ and $(1/2)\mathcal{N}(\mu_1,I)+(1/2)\mathcal{N}(\mu_2,I)$ requires $\Omega(d)$ samples.
- Sparse Mean Testing

APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Unified technique yielding a range of applications

Learning Problem	Upper Bound	SQ Lower Bound
Robust Gaussian Mean Estimation	Error: $O(\epsilon \log^{1/2}(1/\epsilon))$ [DKKLMS'16]	Runtime Lower Bound: $d^{\mathrm{poly}(M)}$
Robust Gaussian Covariance Estimation	Error: $O(\epsilon \log(1/\epsilon))$ [DKKLMS'16]	for factor M improvement in error.
Learning k -GMMs (without noise)	Runtime: $d^{g(k)} \\ [\text{MV'10, BS'10}]$	Runtime Lower Bound: $d^{\Omega(k)}$
Robust k -Sparse Mean Estimation	Sample size: $ \tilde{O}(k^2 \log d) \\ \text{[Li'17, DBS'17]} $	If sample size is $O(k^{1.99})$ runtime lower bound: $d^{k^{\Omega(1)}}$
Robust Covariance Estimation in Spectral Norm	Sample size: $ \tilde{O}(d^2) \\ [{\rm DKKLMS'16}] $	If sample size is $O(d^{1.99})$ runtime lower bound: $2^{d^{\Omega(1)}}$

APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Unified technique yielding a range of applications

Learning Problem	Upper Bound	SQ Lower Bound
Robust Gaussian Mean Estimation	Error: $O(\epsilon \log^{1/2}(1/\epsilon))$ [DKKLMS'16]	Factor M improvement in error requires either accuracy $\tau \leq d^{-\mathrm{poly}(M)}$
Robust Gaussian Covariance Estimation	Error: $O(\epsilon \log(1/\epsilon))$ [DKKLMS'16]	or $2^{d^{\Omega(1)}}$ statistical queries (SQs).
Learning k -GMMs (without noise)	Runtime: $d^{g(k)} \\ [\text{MV'10, BS'10}]$	Either accuracy $ au \leq d^{-k}$ or $2^{d^{\Omega(1)}}$ SQs.
Robust k -Sparse Mean Estimation	Sample size: $ \tilde{O}(k^2 \log d) \\ \text{[Li'17, DBS'17]} $	Either accuracy $ au \leq k^{99}$ or $d^{k^{\Omega(1)}}$ SQs.
Robust Covariance Estimation in Spectral Norm	Sample size: $ \tilde{O}(d^2) \\ [{\rm DKKLMS'16}] $	Either accuracy $ au \leq d^{99} $ or $ 2^{d^{\Omega(1)}} $ SQs.

OUTLINE

Part I: Introduction

- Unsupervised Learning in High Dimension
- Statistical Query (SQ) Learning Model
- Our Results

Part II: Computational SQ Lower Bounds

- Generic SQ Lower Bound Technique
- Two Applications: Learning GMMs,
 Robustly Learning a Gaussian

Part III: Extensions

Part IV: Summary and Conclusions

SUMMARY AND FUTURE DIRECTIONS

- General Technique to Prove SQ Lower Bounds
- Implications for a Range of Unsupervised Estimation Problems
- Robustness can make high-dimensional estimation harder computationally and information-theoretically.

Future Directions:

- Further Applications of our Framework
- Understand the Power of SQ Algorithms
- Alternative Evidence of Computational Hardness?
- Deeper Understanding of Intractability in Unsupervised Learning

Thanks! Any Questions?

APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Learning Problem	SQ Lower Bound	
Robust Gaussian Mean Estimation	One-dimensional distribution A matches first M moments of $N(0, 1)$.	
Robust Gaussian Covariance Estimation	(Legendre polynomials)	
Learning k -GMMs (without noise)	A matches $2k$ -1 moments of $N(0, 1)$. (Gaussian-Hermite curvature)	

GENERAL RECIPE FOR TESTING LOWER BOUNDS

Our generic technique for proving Testing Lower Bounds:

- Step #1: Construct distribution \mathbf{P}_v that is standard Gaussian in all directions except v.
- Step #2: Construct the univariate projection in the v direction so that it matches the first moments of $\mathcal{N}(0,1)$
- Step #3: Consider the family of instances $\mathcal{D} = \{\mathbf{P}_v\}_v$

GENERIC TESTING LOWER BOUND

Definition: For a unit vector v and a univariate distribution with density A, consider the high-dimensional distribution

$$\mathbf{P}_{v}(x) = A(v \cdot x) \exp\left(-\|x - (v \cdot x)v\|_{2}^{2}/2\right) / (2\pi)^{(d-1)/2}.$$

Theorem [D-Kane-Stewart'16]

Suppose A has mean 0 and $\chi^2(A, N(0, 1))$ is finite.

Any algorithm that can distinguish between:

- D = N(0, I)
- $D \in \{\mathbf{P}_v\}_v$

with probability at least 2/3 requires at least

$$\Omega\left(\frac{d}{\chi^2(A,N(0,1))}\right)$$

samples.

Proof crucially exploits correlation lemma.

HIGH-DIMENSIONAL GAUSSIAN MEAN TESTING

Gaussian Mean Testing

Distinguish between:

- Completeness: $D = \mathcal{N}(0, I)$
- Soundness: $D = \mathcal{N}(\mu, I)$ with $\|\mu\|_2 \ge \epsilon$

Algorithm:

- Draw $k = O(\sqrt{d}/\epsilon^2)$ samples X_1, \dots, X_k from D
- Let $Z = \sum_{i=1}^k X_i/\sqrt{k}$ and $T = d + \epsilon^2 k/2$
- If $||Z||_2^2 \le T$, then output "YES". Otherwise, output "NO".

Analysis: If $D=\mathcal{N}(\mu,I)$ then $Z\sim\mathcal{N}(\mu\sqrt{k},I)$ Therefore, $\mathbf{E}\left[\|Z\|_2^2\right]=d+k\|\mu\|_2^2 \text{ and } \mathbf{Var}\left[\|Z\|_2^2\right]=O(d+k\|\mu\|_2^2)$ So, if $k\|\mu\|_2^2\gg\sqrt{d}$

the algorithm distinguishes between the two cases.

HIGH-DIMENSIONAL GAUSSIAN MEAN TESTING

Robust Gaussian mean testing

Distinguish between:

- Completeness: $D = \mathcal{N}(0, I)$
- Soundness: $D \sim_{\delta} \mathcal{N}(\mu, I)$ with $\|\mu\|_2 \geq \epsilon$

Why does mean-based algorithm fail with noise?

Let
$$\delta = \epsilon/100$$
.

Consider

$$A = (1 - \delta)\mathcal{N}(\epsilon, 1) + \delta\mathcal{N}(-(1 - \delta)\epsilon/\delta, 1)$$

Mean 0 and $\chi^2(A, \mathcal{N}(0,1)) = O(\epsilon^2)$.

PROOF OF GENERIC TESTING LOWER BOUND

Suffices to show that

$$\chi^2(\mathbf{Q}_N, \mathcal{N}(0, I)^N) < 1/3$$

when

$$N < \frac{d}{\chi^2(A, \mathcal{N}(0, 1))}$$

Can calculate

$$\chi^{2}(\mathbf{Q}_{N}, N(0, I)^{N}) + 1 = \int_{v} \int_{v'} (1 + \chi_{N(0, I)}(\mathbf{P}_{v}, \mathbf{P}_{v'}))^{N} dv' dv$$

$$\leq \int_{v} \int_{v'} (1 + |v \cdot v'|^{2} \chi^{2} (A, N(0, 1)))^{N} dv' dv$$

Analysis of the distribution of the angle between two random vectors.