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UNSUPERVISED	MACHINE	LEARNING

In	many	applications	of	machine	learning:

• Very	large	amounts	of	data
• Data	mostly	unlabeled	– lacking	useful/structural	annotations
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Can	we	automatically	discover	interesting	structure	in	unlabeled	
data?



• Input:	sample	generated	by	model	with	unknown
• Goal:	estimate	parameters				so	that		

THE		UNSUPERVISED	LEARNING	PROBLEM

Question	1:	Is	there	an	efficient learning	algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time
• Robustness

Question	2:	Are	there	
tradeoffs between	these	
criteria?
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STATISTICAL	QUERIES	[KEARNS’	93]

𝑥", 𝑥$, … , 𝑥& ∼ 𝐷 over	𝑋



STATISTICAL	QUERIES	[KEARNS’	93]

𝑣" − 𝐄-∼. 𝜙" 𝑥 ≤ 𝜏
𝜏 is	tolerance	of	the	query;	𝜏 = 1/ 𝑚�

𝜙7

𝑣"
𝜙$
𝑣$

𝑣7SQ	algorithm
STAT.(𝜏) oracle

	𝐷

𝜙": 𝑋 → −1,1

Problem	𝑃 ∈ SQCompl 𝑞,𝑚 :	
If	exists	a	SQ	algorithm	that	solves	𝑃 using	𝑞 queries	to	
STAT.(𝜏 = 1/ 𝑚� )



POWER	OF	SQ ALGORITHMS	(?)
Restricted	Model:	Hope	to	prove	unconditional	computational	lower	
bounds.

Powerful	Model:	Wide	range	of	algorithmic	techniques	in	ML	are	
implementable	using	SQs*:

• PAC	Learning:	AC0,	decision	trees,	linear	separators,	boosting.

• Unsupervised	Learning:	stochastic	convex	optimization,	moment-
based	methods,	k-means	clustering,	EM,	…
[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

Only	known	exception:	Gaussian	elimination	over	finite	fields	(e.g.,	
learning	parities).

For	all	problems	in	this	talk,	strongest	known	algorithms	are	SQ.



METHODOLOGY	FOR	SQ LOWER	BOUNDS
Statistical	Query	Dimension:

• Fixed-distribution	PAC	Learning	
[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95;	…]

• General	Statistical	Problems
[Feldman-Grigorescu-Reyzin-Vempala-Xiao’13,	…,	Feldman’16]

Pairwise	correlation	between	D1 and	D2 with	respect	to	D:

Fact:	Suffices	to	construct	a	large	set	of	distributions	that	are	nearly
uncorrelated.	
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GAUSSIAN	MIXTURE	MODEL	(GMM)

• GMM:	Distribution	on								with	probability	density	function

• Extensively	studied	in	statistics	and	TCS

Karl	Pearson	(1894)



LEARNING	GMMS	- PRIOR	WORK	(I)

Two	Related	Learning	Problems
Parameter	Estimation:	Recover	model	parameters.

• Separation	Assumptions:	Clustering-based	Techniques
[Dasgupta’99,	Dasgupta-Schulman’00,	Arora-Kanan’01,	
Vempala-Wang’02,	Achlioptas-McSherry’05,	
Brubaker-Vempala’08]

Sample	Complexity:
(Best	Known)	Runtime:		

• No	Separation:	Moment	Method
[Kalai-Moitra-Valiant’10,	Moitra-Valiant’10,	
Belkin-Sinha’10,	Hardt-Price’15]

Sample	Complexity:		
(Best	Known)	Runtime:



LEARNING	GMMS	- PRIOR	WORK	(II)

Density	Estimation:	Recover	underlying	distribution
(within	statistical	distance			).

[Feldman-O’Donnell-Servedio’05,	Moitra-Valiant’10,	Suresh-Orlitsky-Acharya-
Jafarpour’14,	Hardt-Price’15,	Li-Schmidt’15]

Sample	Complexity:

(Best	Known)	Runtime:		

Fact:	For	separated	GMMs,	density	estimation	and	parameter	
estimation	are	equivalent.	Therefore,																					 samples	
suffice	for	both	learning	problems.	



LEARNING	GMMS	– OPEN	QUESTION

Summary:	The	sample	complexity	of	density	estimation	for	
k-GMMs	is																				.	The	sample	complexity	of	parameter	
estimation	for	separated k-GMMs	is																					.

Open	Question:	Is	there	a																						time learning	algorithm?	



STATISTICAL	QUERY	LOWER	BOUND	FOR	
LEARNING	GMMS

Theorem: Suppose	that																								.	Any	SQ	algorithm	that	learns	
separated	k-GMMs	over							to	constant	error	requires	either:
• SQ	queries	of	accuracy

or
• At	least																												

many	SQ	queries.	

Take-away: Computational	complexity	of	learning	GMMs	is	
inherently	exponential	in	dimension	of	latent	space.
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Can	we	develop	learning/estimation	algorithms	that	are	
robust to	a	constant	fraction	of	corruptions in	the	data?

ROBUST	HIGH-DIMENSIONAL	ESTIMATION

Contamination	Model:
Let					be	a	family	of	high-dimensional	distributions.
We	say	that	a	distribution									is					- corrupted	with	
respect	to							if	there	exists																such	that		

F

F 2 FF
✏



ROBUSTLY	LEARNING	A	GAUSSIAN

Basic	Problem:	Given	an					- corrupted	version								of	an	unknown	
d-dimensional	unknown	mean	Gaussian

efficiently compute	a	hypothesis	distribution							such	that

✏

error	is	the	information-theoretically	best	possible.



ROBUSTLY	LEARNING	A	GAUSSIAN – PRIORWORK

Basic	Problem:	Given	an					- corrupted	version								of	an	unknown	
d-dimensional	unknown	mean	Gaussian

efficiently compute	a	hypothesis	distribution							such	that

✏

• Extensively	studied	in	robust	statistics	since	the	1960’s.	Till	
recently,	known	efficient	estimators	get	error	

• Recent	Algorithmic	Progress:	
-- [Lai-Rao-Vempala’16]

-- [D-Kamath-Kane-Li-Moitra-Stewart’16]



ROBUST	LEARNING	– OPEN	QUESTION

Summary	of	Prior	Work: There	is	a																			time	algorithm	for	
robustly	learning																		within	error	

Open	Question:	Is	there	a																				time	algorithm	for	robustly	
learning																		within	error																														?									
How	about										?



STATISTICAL	QUERY	LOWER	BOUND	FOR	
ROBUSTLY	LEARNING	A	GAUSSIAN

Theorem:	Suppose																																					Any	SQ	algorithm	that	
learns		an				- corrupted	Gaussian																	within	statistical	distance	
error

requires	either:
• SQ	queries	of	accuracy	
or
• At	least	

many	SQ	queries.

Take-away: Any	asymptotic	improvement	in	error	guarantee	over	
prior	work	requires	super-polynomial	time.
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SAMPLE	COMPLEXITY	OF	ROBUST	TESTING
High-Dimensional	Hypothesis	Testing

Gaussian	Mean	Testing
Distinguish	between:
• Completeness:		
• Soundness:																																with		

Simple	mean-based	algorithm	with																			samples.

Suppose	we	add	corruptions	to	soundness	case	at	rate											.

Theorem
Sample	complexity	of	robust	Gaussian	mean	testing	is										.

Take-away: Robustness	can	dramatically	increase	the	sample	
complexity	of	an	estimation	task.



Part	I:	Introduction
� Unsupervised	Learning	in	High	Dimension

� Statistical	Query	(SQ)	Learning	Model
� Our	Results

Part	II:	Computational	SQ	Lower	Bounds
� Generic	SQ	Lower	Bound	Technique

� Two	Applications:	Learning	GMMs,	
Robustly	Learning	a	Gaussian

OUTLINE

Part	III:	Extensions

Part	IV:	Summary	and	Conclusions



GENERAL	RECIPE	FOR	(SQ)	LOWER	BOUNDS

Our	generic	technique	for	proving	SQ	Lower	Bounds:	

� Step	#1:	Construct	distribution							that	is	standard	Gaussian	
in	all	directions	except			.			

� Step	#2:	Construct	the	univariate	projection	in	the				direction
so	that	it	matches	the	first	m moments	of	

� Step	#3:	Consider	the	family	of	instances	



HIDDEN	DIRECTION	DISTRIBUTION

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Example:



GENERIC	SQ	LOWER	BOUND

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown	 within	error				
requires	either	queries	of	accuracy											or												many	queries.



WHY	IS	FINDING	A	HIDDEN	DIRECTION	HARD?

Observation:	Low-Degree	Moments	do	not	help.

• A matches	the	first	m moments	of
• The	first	m moments	of									are	identical	to	those	of
• Degree-(m+1) moment tensor has              entries. 

Claim:	Random	projections	do	not	help.

• To	distinguish	between							and																,	would	need	
exponentially	many	random	projections.		



ONE-DIMENSIONAL	PROJECTIONS	ARE	ALMOST	GAUSSIAN

Key	Lemma:	Let	Q be	the	distribution	of												,	where																.
Then,	we	have	that:



PROOF	OF	KEY	LEMMA	(I)



PROOF	OF	KEY	LEMMA	(I)



PROOF	OF	KEY	LEMMA	(II)

where is	the	operator	over																							

Gaussian	Noise	(Ornstein-Uhlenbeck)
Operator



EIGENFUNCTIONS OF	ORNSTEIN-UHLENBECK OPERATOR

Linear	Operator acting	on	functions

Fact	(Mehler’66):

• denotes	the	degree-i Hermite polynomial.
• Note	that																																													are	orthonormal	with	respect	

to	the	inner	product



PROOF	OF	KEY	LEMMA	(III)

We	can	write:

where

Since	A has	the	same	first	m moments	as	

Therefore



PROOF	OF	KEY	LEMMA	(III)

Since	A has	the	same	first	m moments	as	

Therefore



PROOF	OF	KEY	LEMMA	(III)

Since	A has	the	same	first	m moments	with	

and

Using	Mehler’s lemma:



GENERIC	SQ	LOWER	BOUND

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown	 within	error				
requires	either	queries	of	accuracy										or												many	queries.



PROOF	OF	GENERIC	SQ LOWER	BOUND	
• Suffices	to	construct	a	large	set	of	distributions	that	are	

nearly uncorrelated.	
• Pairwise	correlation	between	D1 and	D2 with	respect	to	

D:

Two	Main	Ingredients:

Correlation	Lemma:	

Packing	Argument:	There	exists	a	set	S of																unit	
vectors	on								with	pairwise	inner	product	



PROOF	OF	CORRELATION	LEMMA

Let

• Correlation	is	two-dimensional:	

• Relate	correlation	to	chi-squared	distance:

• By	Key	Lemma,	noise	operator	makes	A closer	to	Gaussian:

Therefore,
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Theorem: Any	SQ	algorithm	that	learns	separated	k-GMMs	over							
to	constant	error	requires	either	SQ	queries	of	accuracy
or	at	least																																many	SQ	queries.	

APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (I)

Want	to	show:

by	using	our	generic	proposition:

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown							within	error				
requires	either	queries	of	accuracy										or												many	queries.



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (II)

Proposition:	Suppose	that:	
• A matches	the	first	m moments	of		
• We	have																																						as	long	as	v, v’ are	nearly

orthogonal.

Then	any	SQ	algorithm	that	learns	an	unknown							within	error				
requires	either	queries	of	accuracy										or												many	queries.

Lemma:	There	exists	a	univariate	distribution	A that	is	a	k-GMM	
with	components	Ai such that:
• A agrees	with															on	the	first	2k-1 moments.
• Each	pair	of	components	are	separated.
• Whenever	v and	v’ are	nearly	orthogonal	



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (III)
Lemma:	There	exists	a	univariate	distribution	A that	is	a	k-GMM	
with	components	Ai such that:
• A agrees	with															on	the	first	2k-1 moments.
• Each	pair	of	components	are	separated.
• Whenever	v and	v’ are	nearly	orthogonal	



APPLICATION:	SQ LOWER	BOUND	FOR	GMMS (III)
High-Dimensional	Distributions							look	like	“parallel	pancakes”:		

Efficiently	learnable	for	k=2. [Brubaker-Vempala’08]
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FURTHER	RESULTS

SQ	Lower	Bounds:
• Learning	GMMs
• Robustly	Learning	a	Gaussian

• Robust	Covariance	Estimation	in	Spectral	Norm:	
“Any	efficient	SQ	algorithm	requires														samples.”

• Robust	k-Sparse	Mean	Estimation:
“Any	efficient	SQ	algorithm	requires	 samples.”

Sample	Complexity	Lower	Bounds
• Robust	Gaussian	Mean	Testing

• Testing	Spherical	2-GMMs:	Distinguishing	between															 and																																																											
requires										samples.

• Sparse	Mean	Testing

Unified	technique	yielding	a	range	of	applications.



APPLICATIONS:	CONCRETE	SQ LOWER	BOUNDS
Unified	technique	yielding	a	range	of	applications

Learning	Problem Upper	Bound SQ	Lower	Bound

Robust	Gaussian	Mean
Estimation

Error:

[DKKLMS’16]

Runtime	Lower	Bound:

for	factor	M improvement	in	
error.

Robust	Gaussian	
Covariance	Estimation

Error:

[DKKLMS’16]

Learning	k-GMMs	
(without	noise)

Runtime:

[MV’10,	 BS’10]

Runtime Lower	Bound:

Robust	k-Sparse	Mean	
Estimation

Sample	size:

[Li’17,	DBS’17]

If sample	size	is	
runtime	lower	bound:

Robust	Covariance
Estimation	in	Spectral	

Norm

Sample	size:	

[DKKLMS’16]

If sample	size	is	
runtime	lower	bound:



APPLICATIONS:	CONCRETE	SQ LOWER	BOUNDS
Unified	technique	yielding	a	range	of	applications

Learning	Problem Upper	Bound SQ	Lower	Bound

Robust	Gaussian	Mean
Estimation

Error:

[DKKLMS’16]

Factor M improvement	in	error	
requires	either	accuracy	

or

statistical	queries	(SQs).

Robust	Gaussian	
Covariance	Estimation

Error:

[DKKLMS’16]

Learning	k-GMMs	
(without	noise)

Runtime:

[MV’10,	 BS’10]

Either accuracy

or																	SQs.			

Robust	k-Sparse	Mean	
Estimation

Sample	size:

[Li’17,	DBS’17]

Either	accuracy

or																SQs.	

Robust	Covariance
Estimation	in	Spectral	

Norm

Sample	size:	

[DKKLMS’16]

Either	accuracy

or															SQs.	
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SUMMARY	AND	FUTURE	DIRECTIONS

• General	Technique	to	Prove	SQ	Lower	Bounds
• Implications	for	a	Range	of	Unsupervised	Estimation	Problems
• Robustness	can	make	high-dimensional	estimation	harder	
computationally	and	information-theoretically.

Future	Directions:

• Further	Applications	of	our	Framework

• Understand	the	Power	of	SQ	Algorithms

• Alternative	Evidence	of	Computational	Hardness?

• Deeper	Understanding	of	Intractability	in	Unsupervised	Learning	

Thanks!	Any	Questions?



APPLICATIONS:	CONCRETE	SQ LOWER	BOUNDS

Learning	Problem SQ	Lower	Bound

Robust	Gaussian	Mean Estimation One-dimensional	distribution	
A matches	first	M moments	of	N(0, 1).

(Legendre polynomials)Robust	Gaussian	Covariance	Estimation

Learning	k-GMMs	
(without	noise)

A matches	2k-1	moments	of	N(0, 1).
(Gaussian-Hermite curvature)



GENERAL	RECIPE	FOR	TESTING	LOWER	BOUNDS

Our	generic	technique	for	proving	Testing	Lower	Bounds:	

� Step	#1:	Construct	distribution							that	is	standard	Gaussian	
in	all	directions	except			.			

� Step	#2:	Construct	the	univariate	projection	in	the				direction
so	that	it	matches	the	first	moments	of	

� Step	#3:	Consider	the	family	of	instances	



GENERIC	TESTING	LOWER	BOUND

Definition: For	a	unit	vector	v and	a	univariate	distribution	with	
density	A,	consider	the	high-dimensional	distribution	

Theorem	[D-Kane-Stewart’16]
Suppose A has	mean	0	and																											is	finite.	
Any	algorithm	that	can	distinguish	between:
•
•
with	probability	at	least	2/3 requires	at	least	

samples.

Proof	crucially	exploits	correlation	lemma.



HIGH-DIMENSIONAL	GAUSSIANMEAN	TESTING
Gaussian	Mean	Testing
Distinguish	between:
• Completeness:		
• Soundness:																																with		

Algorithm:
• Draw																											samples																					from	
• Let																																			and	
• If																			,	then	output	“YES”.	Otherwise,	output	“NO”.				

Analysis:	If																									then																													
Therefore,	

and
So,	if	

the	algorithm	distinguishes	between	the	two	cases.



HIGH-DIMENSIONAL	GAUSSIANMEAN	TESTING

Robust	Gaussian	mean	testing
Distinguish	between:
• Completeness:		
• Soundness:																													with		

Why	does	mean-based	algorithm	fail	with	noise?	

Let																			.
Consider

Mean	0	and	 .



PROOF	OF	GENERIC	TESTING	LOWER	BOUND	
Suffices	to	show	that

when	

Can	calculate	

Analysis	of	the	distribution	of	the	angle	between	two	random	
vectors.


