Learning Geometric Concepts with Nasty Noise

Ilias Diakonikolas (USC)

joint work with

Daniel Kane (UCSD) & Alistair Stewart (USC)

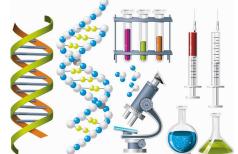
Can we develop learning algorithms that are *robust* to a *constant* fraction of *corruptions* in the data?

MOTIVATION

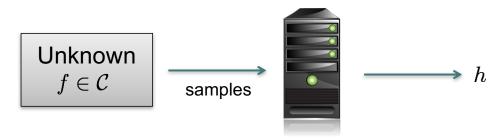
Model Misspecification/Robust Statistics:
 Any model only approximately valid.

 Need stable estimators
 [Fisher 1920, Huber 1960s, Tukey 1960s]

- Outlier Removal: Natural outliers in real datasets.
 Hard to detect in several cases
 [Rosenberg et al., Science'02; Li et al., Science'08;
 Paschou et al., Journal of Medical Genetics'10]
- Reliable/Adversarial/Secure ML:
 Data poisoning attacks (e.g., crowdsourcing)
 [Biggio et al. ICML'12, ...]



THE PAC LEARNING PROBLEM [VALIANT'84]



 ${\mathcal C}$: known class of Boolean-valued functions on ${\mathbb R}^n$

D: fixed (unknown) distribution on \mathbb{R}^n

- Input: labeled sample $\{(x^{(i)},y_i)\}_{i=1}^m$ where $x^{(i)}\sim D$ and $y_i=f(x^{(i)})$
- Goal: compute hypothesis $h:\mathbb{R}^n \to \{\pm 1\}$ such that $\Pr_{x\sim D}[h(x) \neq f(x)]$ is small

Question: Is there an efficient learning algorithm?

PAC LEARNING WITH "NASTY" NOISE

"nasty" PAC learning [Bshouty-Eiron-Khusilevitz'02]

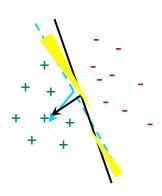
Contamination Model:

Fix $0<\epsilon<1/2$. We say that a set of m samples is ϵ -corrupted from $\mathcal C$ if it is generated as follows:

- m samples $\{(x^{(i)},y_i)\}_{i=1}^m$ are drawn, where $x^{(i)}\sim D$ and $y_i=f(x^{(i)})$ for some unknown $f\in\mathcal{C}$
- An omniscient adversary inspects these samples and changes arbitrarily an ϵ fraction of them.

cf. malicious PAC learning [Valiant'85, Kearns-Li'93] agnostic PAC learning [Haussler'92, Kearns-Shapire-Sellie'94]

THIS TALK: GEOMETRIC CONCEPT CLASSES

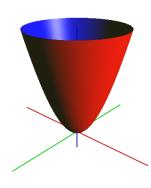


Polynomial Threshold Functions (PTFs)

 $f:\mathbb{R}^n o \{\pm 1\}$ such that

$$f(x) = \operatorname{sgn}(p(x))$$

where $p:\mathbb{R}^n \to \mathbb{R}$ is a degree-d real polynomial.



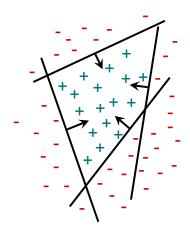
Linear Threshold Functions (Halfspaces)

 $f:\mathbb{R}^n o \{\pm 1\}$ such that

$$f(x) = \operatorname{sgn}(w \cdot x - \theta)$$

where $w \in \mathbb{R}^n, \theta \in \mathbb{R}$

Intersections of LTFs



PREVIOUS WORK: PAC LEARNING (NO CORRUPTIONS)

- Low-degree PTFs efficiently PAC learnable under **any** distribution [Blumer et al. '89]: "For all $\gamma>0$, can achieve accuracy γ with $\mathrm{poly}(n^d,1/\gamma)$ samples and time."
- Intersection of 2 Halfspaces under any distribution:

?

 Intersection of any constant number of Halfspaces efficiently PAC learnable under "well-behaved" distributions
 e.g., [Baum'91, Blum-Kannan'96, Klivans-O'Donnell-Servedio'02, Vempala'10].

PREVIOUS WORK: "ROBUST" PAC LEARNING (I)

If $0<\epsilon<1/2$ is fraction of corruptions, information-theoretic optimal error is $\Theta(\epsilon)$.

Distribution D is arbitrary:

- Can efficiently achieve error $\epsilon \cdot n$ [Kearns-Li'93].
- "Hard" to get dimension-independent error, even for LTFs [Daniely'16].

Distribution *D* is "well-behaved":

- Agnostic learning model (label corruptions): " L_1 -regression" algorithm [KKMS'05] can get error $\epsilon+\gamma$ with samples and time $n^{\mathrm{poly}(1/\gamma)}$
- Malicious learning model: $poly(n, 1/\epsilon)$ time algorithms for o*rigin-centered* LTFs [Klivans-Long-Servedio'09], [Awasthi-Balcan-Long'14/'17], [Daniely'15].

PREVIOUS WORK: "ROBUST" PAC LEARNING (II)

If $0 < \epsilon < 1/2$ is fraction of corruptions, information-theoretic optimal error is $\Theta(\epsilon)$.

Distribution *D* is "well-behaved":

"Robust learning" of origin-centered LTFs in time $poly(n, 1/\epsilon)$

- [Klivans-Long-Servedio'09]:
- $O(\sqrt{\epsilon}\log(n/\epsilon))$ $O(\epsilon^{1/3}\log^2(n/\epsilon))$ - Standard Gaussian/uniform on sphere:
- Isotropic log-concave distributions:
- [Awasthi-Balcan-Long'17]:
- $O(\epsilon)$ - Isotropic log-concave distributions:

(Malicious/adversarial label noise)

PREVIOUS WORK: "ROBUST" PAC LEARNING (II)

If $0 < \epsilon < 1/2$ is fraction of corruptions, information-theoretic optimal error is $\Theta(\epsilon)$.

Distribution *D* is "well-behaved":

"Robust learning" of origin-centered LTFs in time $poly(n, 1/\epsilon)$

- [Klivans-Long-Servedio'09]:
- Standard Gaussian/uniform on sphere:
- $O(\sqrt{\epsilon}\log(n/\epsilon))$ $O(\epsilon^{1/3}\log^2(n/\epsilon))$ - Isotropic log-concave distributions:
- [Awasthi-Balcan-Long'17]:
- $O(\epsilon)$ - Isotropic log-concave distributions:

(Malicious/adversarial label noise)

Origin-centered LTFs only concept class for which efficient malicious PAC learning algorithms known.

What about efficient robust estimation for more general concept classes?

Goal: Dimension-independent error guarantees.

THIS TALK: OUR CONTRIBUTION

First efficient robust learning algorithms with **dimension-independent** error guarantees for more general *geometric* concept classes.

- Efficient PAC learning algorithm in nasty noise model for that can tolerate a *constant* fraction of corruptions for:
 - low-degree PTFs
 - intersections of constantly many LTFs under Gaussian distribution.
- Near-optimal error guarantee for all LTFs.

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contribution

Part II: Robust Learning of Geometric Concepts

- · Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contribution

Part II: Robust Learning of Geometric Concepts

- · Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

NASTY PAC LEARNING OF LOW-DEGREE PTFS

Problem: Given m samples $\{(x^{(i)},y_i)\}_{i=1}^m$ of which $(1-\epsilon)m$ satisfy $x^{(i)}\sim D$ and $y_i=f(x^{(i)})$, for an unknown **degree-**d **PTF** f, compute hypothesis h such that $\Pr_{x\sim D}[h(x)\neq f(x)]$ is small.

Theorem: Let D be any log-concave distribution with known moments up to degree 2d. There is a $\operatorname{poly}(n^d,1/\epsilon)$ time algorithm that outputs a degree-d PTF h such that

$$\Pr_{x \sim D}[h(x) \neq f(x)] \le \epsilon^{\Omega(1/d)}$$

Error Guarantee Independent of *n*!

- For d=1 under N(0,I), error is $O(\epsilon \sqrt{\log(1/\epsilon)})$
- For d=1, get dimension-independent error for uniform distribution on $\{\pm 1\}^n$

NEAR-OPTIMAL NASTY PAC LEARNING OF LTFS

Problem: Given m samples $\{(x^{(i)},y_i)\}_{i=1}^m$ of which $(1-\epsilon)m$ satisfy $x^{(i)}\sim D$ and $y_i=f(x^{(i)})$, for an unknown **LTF** f, compute hypothesis h such that $\Pr_{x\sim D}[h(x)\neq f(x)]$ is small.

Theorem: Let D be N(0, I). There is a $\operatorname{poly}(n, 1/\epsilon)$ time algorithm that outputs an LTF h such that

$$\Pr_{x \sim D}[h(x) \neq f(x)] \leq O(\epsilon)$$

Error guarantee optimal, up to constant factor

cf. [DKS'17] SQ lower bound for robust mean estimation within $o(\epsilon \sqrt{\log(1/\epsilon)})$.

NASTY PAC LEARNING OF POLYTOPES

Problem: Given m samples $\{(x^{(i)},y_i)\}_{i=1}^m$ of which $(1-\epsilon)m$ satisfy $x^{(i)}\sim D$ and $y_i=f(x^{(i)})$, for an unknown **intersection of** k **LTFs** f, compute hypothesis h such that $\Pr_{x\sim D}[h(x)\neq f(x)]$ is small.

Theorem: Let D be N(0,I). There is an algorithm that draws $\operatorname{poly}(n,k,1/\epsilon)$ corrupted labeled examples, runs in time $\operatorname{poly}_k(n,1/\epsilon)$, and outputs an intersection of k LTFs h such that

$$\Pr_{x \sim D}[h(x) \neq f(x)] \leq k^{O(1)} \cdot \epsilon^{\Omega(1)}$$

Error Guarantee Independent of n!

No non-trivial robust learning algorithm previously known even for k=2.

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contributions

Part II: Robust Learning of Geometric Concepts

- Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

ROBUST LEARNING ALGORITHM FOR LOW-DEGREE PTFS

Two-step Procedure:

Step 1: Robustly estimate the degree at most d "Chow parameters" of f.

Step 2: Find a degree-d PTF h with (approximately) these Chow parameters.

Output h.

Step 2: Use "boosting" algorithm of [Trevisan-Tulsiani-Vadhan'09, De-D-Feldman-Servedio'12].

ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (I)

Def: Let $f: \mathbb{R}^n \to [-1,1]$ and D a distribution on \mathbb{R}^n . The degree-d Chow parameters of f with respect to D are $\mathbf{E}_{x \sim D}[f(x)m_i(x)]$ for all degree at most d monomials $m_i(x)$

Problem: Given m samples $\{(x^{(i)},y_i)\}_{i=1}^m$ of which $(1-\epsilon)m$ satisfy $x^{(i)}\sim D$ and $y_i=f(x^{(i)})$, for an unknown $f:\mathbb{R}^n\to [-1,1]$, compute an approximation to the degree-d Chow parameters of f in l_2 - norm.

Theorem: Let D be N(0,I), uniform on $\{\pm 1\}^n$ or any log-concave distribution with known moments up to degree 2d. There is a $\operatorname{poly}(n^d,1/\epsilon)$ time algorithm that outputs an approximation with l_2 – error $O_d(\epsilon \cdot \log(1/\epsilon)^d)$.

ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (II)

- Let S be a set of samples from D. Then $\mathbf{E}_{x\sim_u S}[f(x)m_i(x)] pprox \mathbf{E}_{x\sim D}[f(x)m_i(x)]$
- Let S be an ϵ corrupted set of samples from D.

 $\mathbf{E}_{x \sim D}[f(x)p(x)]$ can be very far from $\mathbf{E}_{x \sim_u S}[f(x)p(x)]$ for some degree-d polynomials p.

Main Idea: "Fix the moments" by iterative filtering

(inspired by [D-Kamath-Kane-Lee-Moitra-Stewart'16])

- Detect whether there is a degree-*d* polynomial whose *empirical* variance is much larger than its variance under *D*.
- If no such polynomial exists, use empirical.
- Otherwise, can detect and remove outliers.

ROBUST LEARNING ALGORITHM FOR POLYTOPES

Two-step Procedure:

Step 1: Robustly estimate the degree at most 2 "Chow parameters" of f.

Step 2: Project to an approximate k+1 dimensional subspace V and solve the problem by using a cover on V. Let g be the output.

Output $h(x) = g(\pi_V(x))$.

Main challenge: Analysis of Correctness

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contribution

Part II: Robust Learning of Geometric Concepts

- Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

SUMMARY AND CONCLUSIONS

- First computationally efficient robust PAC learners with dimension-independent error guarantees for low-degree PTFs and intersections of LTFs.
- Near-optimal error guarantees for robust PAC learning of LTFs.
- General procedure for robustly learning low-degree Chow parameters.

FUTURE DIRECTIONS

General Algorithmic Theory of Robustness

- Pick your favorite high-dimensional learning problem for which a (non-robust) efficient algorithm is known.
- Make it robust!

Concrete Open Questions:

- Near-optimal error guarantees, e.g., $O_d(\epsilon)$ error for degree-d PTFs
- More general classes of distributions
- Practical Algorithms?
 [D-Kamath-Kane-Moitra-Lee-Stewart, ICML'17] [DKKL-Steinhardt-S'18]
- · Alternate models of robustness?

Thank you! Questions?