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Can we develop learning algorithms that are robust to
a constant fraction of corruptions in the data?




MOTIVATION

* Model Misspecification/Robust Statistics:
Any model only approximately valid.
Need stable estimators
[Fisher 1920, Huber 1960s, Tukey 1960s]

» Outlier Removal: Natural outliers in real datasets.
Hard to detect in several cases
[Rosenberg et al., Science’02; Li et al., Science’08;
Paschou et al., Journal of Medical Genetics’10]

* Reliable/Adversarial/Secure ML:
Data poisoning attacks (e.g., crowdsourcing)
[Biggio et al. ICML'12, .. ]




THE PAC LEARNING PROBLEM [VALIANT’84]
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C : known class of Boolean-valued functions on R™
D : fixed (unknown) distribution on R"

- Input: labeled sample {(z®, y;)}™, where 2 ~ D and y; = f(z?)

» Goal: compute hypothesis h : R™ — {£1} such that Pr,p[h(z) # f(z)]

is small

Question: Is there an efficient learning algorithm?




PAC LEA

RNING WITH “NASTY” NOISE

“nasty” PAC learning [Bshouty-Eiron-Khusilevitz'02]
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.

Contamination Model:

Fix 0 < € < 1/2 . We say that a set of m samples is e-corrupted

from C if it is generated as follows:

- m samples {(z®,y;)}™ | are drawn, where 2 ~ D and
y; = f(z) for some unknown f € C

* An omniscient adversary inspects these samples and
changes arbitrarily an € - fraction of them.

~

cf. malicious PAC learning [Valiant'85, Kearns-Li’93]

agnostic PAC learning [Haussler'92, Kearns-Shapire-Sellie’94]



THIS TALK: GEOMETRIC CONCEPT CLASSES

i Polynomial Threshold Functions (PTFs)
S\ f:R™ — {£1} such that
oy T f(z) = sgn(p(z))
+ +L{\ T - ~ where p: R" — R is a degree-d real
+ polynomial.

Linear Threshold Functions (Halfspaces)
f:R™ — {£1} such that

f(z) =sgn(w -z —0)
where w € R",0 € R

Intersections of LTFs




PREVIOUS WORK: PAC LEARNING (NO CORRUPTIONS)

« Low-degree PTFs efficiently PAC learnable under any distribution [Blumer et al. '89]:

“For all v > 0, can achieve accuracy ~ with poly(n¢, 1/v) samples and time.”

» Intersection of 2 Halfspaces under any distribution:
f?

 Intersection of any constant number of Halfspaces efficiently PAC learnable
under “well-behaved” distributions
e.g., [Baum’91, Blum-Kannan’'96, Klivans-O’'Donnell-Servedio’02, Vempala’'10].



PREVIOUS WORK: “ROBUST" PAC LEARNING (I)

If 0 < e < 1/2 is fraction of corruptions,

information-theoretic optimal error is
O(e) .

Distribution D is arbitrary:

» Can efficiently achieve error € - n [Kearns-Li'93].

« “Hard” to get dimension-independent error, even for LTFs [Daniely’16].

Distribution D is “well-behaved’:

« Agnostic learning model (label corruptions): “L,-regression” algorithm [KKMS’05] can get
error € +~ with samples and time nP°(1/7)

« Malicious learning model: poly(n, 1/¢€) time algorithms for origin-centered LTFs
[Klivans-Long-Servedio’09], [Awasthi-Balcan-Long’14/'17], [Daniely’15].



PREVIOUS WORK: “ROBUST” PAC LEARNING (ll)

If 0 < e < 1/2 is fraction of corruptions,

information-theoretic optimal error is
O(e) .

Distribution D is “well-behaved’:

“Robust learning” of origin-centered LTFs in time poly(n,1/¢)

» [Klivans-Long-Servedio’09]:

- Standard Gaussian/uniform on sphere: O(\/Elog(;z/e))
- Isotropic log-concave distributions: 0(61/ % log (n/e))

* [Awasthi-Balcan-Long’17]:

- Isotropic log-concave distributions: O(e)
(Malicious/adversarial label noise)
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Origin-centered LTFs only concept class for which
efficient malicious PAC learning algorithms known.

What about efficient robust estimation for more general concept classes?

Goal: Dimension-independent error guarantees.



THIS TALK: OUR CONTRIBUTION

First efficient robust learning algorithms with dimension-independent
error guarantees for more general geometric concept classes.

« Efficient PAC learning algorithm in nasty noise model for that can
tolerate a constant fraction of corruptions for:

- low-degree PTFs
- intersections of constantly many LTFs
under Gaussian distribution.

» Near-optimal error guarantee for all LTFs.
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NASTY PAC LEARNING OF LOW-DEGREE PTFsS

Problem: Given m samples {(z®, y;)}™ , of which (1 — €)m satisfy () ~ D
and yi = f (iﬂ(z)), for an unknown degree-d PTF f, compute hypothesis / such
that Pryp[h(z) # f(z)] is small.

[ N

Theorem: Let D be any log-concave distribution with known moments
up to degree 2d. There is a poly(n?,1/e) time algorithm that outputs a
degree-d PTF /h such that

Proplh(z) # f(x)] < X1/

Error Guarantee Independent of n !

 For d=1 under N(0, I), error is O(e+/log(1/¢))

« For d=1, get dimension-independent error for uniform distribution on {£1}"



NEAR-OPTIMAL NASTY PAC LEARNING OF LTFs

Problem: Given m samples {(z®, y;)}™ , of which (1 — €)m satisfy () ~ D
and ¥ = f(x(z)), for an unknown LTF f, compute hypothesis % such that
Prz~plh(x) # f(x)] is small.

-

~

Theorem: Let D be N(0, I). There is a poly(n, 1/€) time algorithm that
outputs an LTF / such that

Przplh(z) # f(z)] < O(e)

Error guarantee optimal, up to constant factor

cf. [DKS'17] SQ lower bound for robust mean estimation within o(e+/log(1/€)) .




NASTY PAC LEARNING OF POLYTOPES

Problem: Given m samples {(z®, y;)}™ , of which (1 — €)m satisfy () ~ D
and ¥; = f(iﬂ(z)), for an unknown intersection of k LTFs f, compute
hypothesis % such that Pry.p[h(z) # f(x)] is small.

s A
Theorem: Let D be N(0, ). There is an algorithm that draws poly(n, k, 1/¢)
corrupted labeled examples, runs in time poly(n, 1/€), and outputs an
intersection of k£ LTFs /4 such that

Pr..plh(z) # f(z)] < kOW . £1)

Error Guarantee Independent of n !

No non-trivial robust learning algorithm previously known even for £=2.
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ROBUST LEARNING ALGORITHM FOR LOW-DEGREE PTFs

-

Two-step Procedure:
Step 1: Robustly estimate the degree at most d “Chow parameters” of f.
Step 2: Find a degree-d PTF & with (approximately) these Chow parameters.

Output /.
o

Step 2: Use “boosting” algorithm of
[Trevisan-Tulsiani-Vadhan’'09, De-D-Feldman-Servedio’12].



ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (l)

Def: Let f : R® — [—1, 1] and D a distribution on R™. The degree-d Chow parameters of f
with respect to D are E,p|f(x)m;(x)] for all degree at most d monomials m;(x)

Problem: Given m samples {(z®, y;)}™, of which (1 — €)m satisfy z(® ~ D
and y; = f(z¥), for an unknown f : R — [—1,1] , compute an
approximation to the degree-d Chow parameters of f in /, - norm.

s R
Theorem: Let D be N(0, I), uniform on{=£1}" or any log-concave

distribution with known moments up to degree 2d. There is a poly(n?,1/¢)
time algorithm that outputs an approximation with /, — error

Oule - log(1/€)?) .




ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (lI)

* Let S be a set of samples from D. Then E,.._s[f(x)m;(z)] = E,p|[f(x)m;(x)]
* Let Sbe an e- corrupted set of samples from D.

E.~p[f(z)p(x)] can be very far from E,... s[f(z)p(x)] for some degree-d polynomials p.

fMain Idea: “Fix the moments” by iterative filtering
(inspired by [D-Kamath-Kane-Lee-Moitra-Stewart'16])

» Detect whether there is a degree-d polynomial whose empirical variance is much larger
than its variance under D.

* If no such polynomial exists, use empirical.

* Otherwise, can detect and remove oultliers. )




ROBUST LEARNING ALGORITHM FOR POLYTOPES

-

Two-step Procedure:
Step 1: Robustly estimate the degree at most 2 “Chow parameters” of f.

Step 2: Project to an approximate £+1 dimensional subspace } and solve the
problem by using a cover on V. Let g be the output.

. Output h(z) = g(mv(x)) .

Main challenge: Analysis of Correctness
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SUMMARY AND CONCLUSIONS

» First computationally efficient robust PAC learners with

dimension-independent error guarantees for low-degree
PTFs and intersections of LTFs.

* Near-optimal error guarantees for robust PAC learning of LTFs.

* General procedure for robustly learning low-degree Chow parameters.



FUTURE DIRECTIONS

[ General Algorithmic Theory of Robustness }

» Pick your favorite high-dimensional learning problem for
which a (non-robust) efficient algorithm is known.
« Make it robust!

Concrete Open Questions:

Near-optimal error guarantees, e.g., O4(¢) error for degree-d PTFs
More general classes of distributions
Practical Algorithms?
[D-Kamath-Kane-Moitra-Lee-Stewart, ICML'17] [DKKL-Steinhardt-S’18]
Alternate models of robustness? Thank you!

Questions?



