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Can we develop learning algorithms that are robust to 
a constant fraction of corruptions in the data?



MOTIVATION

• Model Misspecification/Robust Statistics: Any model only approximately valid. Need 
stable estimators [Fisher 1920, Huber 1960s, Tukey 1960s]

• Outlier Removal: Natural outliers in real datasets (e.g., biology). Hard to detect in several 
cases [Rosenberg et al., Science’02; Li et al., Science’08; Paschou et al., Journal of Medical 
Genetics’10]

• Reliable/Adversarial/Secure ML: Data poisoning attacks (e.g., crowdsourcing) 
[Biggio et al. ICML’12, …]



DETECTING OUTLIERS IN REAL DATASETS

• High-dimensional datasets tend to be inherently noisy.

• Outliers: either interesting or can contaminate statistical analysis

Biological Datasets: POPRES project, 
HGDP datasets

[November et al., Nature’08]; 
[Rosenberg et al., Science’02]; 
[Li et al., Science’08];  
[Paschou et al., Medical Genetics’10]



DATA POISONING

Fake Reviews [Mayzlin et al. ‘14]

Recommender Systems: Crowdsourcing: Malware/spam:

[Li et al. ‘16] [Wang et al. ‘14] [Nelson et al. ‘08]



THE STATISTICAL LEARNING PROBLEM

• Input: sample generated by a probabilistic model with unknown
• Goal: estimate parameters    so that  

Question	1:	Is	there	an	efficient learning	algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time
• Robustness

Question	2:	Are	there	tradeoffs between	these	criteria?



ROBUSTNESS IN A GENERATIVE MODEL

Contamination	Model:

Let					be	a	family	of	probabilistic	models.
We	say	that	a	set	of	N samples	is			-corrupted	from							if	it	is	
generated	as	follows:	
• N samples are drawn from an unknown
• An omniscient adversary inspects these samples and 

changes arbitrarily an   -fraction of them.

F

F 2 F

F✏

✏

cf. Huber’s contamination model [1964]



MODELS OF ROBUSTNESS

• Oblivious/Adaptive Adversary
• Adversary can: add corrupted samples, subtract uncorrupted samples or both.
• Six Distinct Models:

Oblivious Adaptive

Additive Errors Huber’s Contamination Model Additive Contamination
(“Data Poisoning”)

Subtractive Errors Subtractive Contamination

Additive and Subtractive 
Errors

Hampel’s Contamination
Strong Contamination

(“Nasty Learning Model”)



EXAMPLE: PARAMETER ESTIMATION

Given samples from an unknown distribution:

e.g., a 1-D Gaussian

how do we accurately estimate its parameters?

empirical mean: empirical variance: 



The maximum likelihood 
estimator is asymptotically 
efficient (1910-1920)

R. A. Fisher J. W. Tukey

What about errors in the 
model itself? (1960)



“Robust Estimation of a Location Parameter”
Annals of Mathematical Statistics, 1964.

Peter J. Huber



ROBUST STATISTICS

What estimators behave well in a neighborhood around the model?



ROBUST ESTIMATION: ONE DIMENSION

• A single corrupted sample can arbitrarily corrupt the empirical mean and 
variance.

• But the median and interquartile range work.

Given corrupted samples from a one-dimensional Gaussian, can we 
accurately estimate its parameters?



Fact [Folklore]: Given a set S of N -corrupted samples from a one-dimensional 
Gaussian

with high constant probability we have that:                           

where

What about robust estimation in high-dimensions?



GAUSSIAN ROBUST MEAN ESTIMATION

Remark: Optimal rate of convergence with N samples is 

[Tukey’75, Donoho’82]

Robust Mean Estimation: Given an     - corrupted set of samples 
from an unknown mean, identity covariance Gaussian                in 
d dimensions, recover      with   

✏



PREVIOUS APPROACHES: ROBUST MEAN ESTIMATION

Error Guarantee Running Time

Tukey Median NP-Hard

Geometric Median

Tournament

Pruning

Unknown Mean



All known estimators are either hard to compute or
can tolerate a negligible fraction of corruptions.

Is robust estimation algorithmically possible in high-dimensions?



“[…] Only simple algorithms (i.e., with a low degree of computational complexity) will
survive the onslaught of huge data sets. This runs counter to recent developments in
computational robust statistics. It appears to me that none of the above problems will be
amenable to a treatment through theorems and proofs. They will have to be attacked by
heuristics and judgment, and by alternative “what if” analyses.[…]”

Robust Statistical Procedures, 1996, Second Edition.

Peter J. Huber, 1975



THIS TALK

Robust estimation in high-dimensions is algorithmically possible!

• First computationally efficient robust estimators that can tolerate a 
constant fraction of corruptions.

• General methodology to detect outliers in high dimensions.

Meta-Theorem (Informal): Can obtain dimension-independent error 
guarantees, as long as good data has nice concentration.



[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16]

Can tolerate a constant fraction of corruptions:

• Mean and Covariance Estimation
• Mixtures of Spherical Gaussians, Mixtures of Balanced Product Distributions

[Lai-Rao-Vempala, FOCS’16]

Can tolerate a mild sub-constant (inverse logarithmic) fraction of 
corruptions:

• Mean and Covariance Estimation
• Independent Component Analysis, SVD



THIS TALK: ROBUST GAUSSIAN MEAN ESTIMATION

Theorem: There are polynomial time algorithms with the following behavior:  
Given            and a set of                         - corrupted samples from a d-
dimensional Gaussian             , the algorithms find that with high 
probability satisfies:
• [LRV’16]:

in additive contamination model.

• [DKKLMS’16]:

in strong contamination model.

✏ > 0
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INFORMATION-THEORETIC LIMITS ON ROBUST ESTIMATION (I)

Proposition: Any robust mean estimator for             has error        , even in Huber’s model.

We start with the following claim:

Claim: Let P1, P2 be such that                                          There exist noise distributions B1, B2
such that 
Proof: 
Can write 

Take                and                . In this case,  



INFORMATION-THEORETIC LIMITS ON ROBUST ESTIMATION (II)

Proposition: Any robust mean estimator for             has error        , even in Huber’s model.
Proof:
Need similar construction where P1, P2 are unit variance Gaussians.
Let                         such that                                           

Since                                                              , this implies that  

More careful, calculation shows that constant  in O (.) is                      . 

Remark: Under different assumptions on good data, we obtain different functions of   .



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (I)

Proposition: There is an algorithm that uses                        - corrupted samples from                
and outputs             that with probability at least 9/10 satisfies

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of all its 1-
dimensional projections. (cf. Tukey median)

Basic Fact: 

Suppose that we can estimate          for each            ,               , i.e., find           such that      
for all             with               we have                            Then, we can learn     within error 

Consider infinite size LP: Find             such that for all with               :  
Let      be any feasible solution. Then 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (II)

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of “all” its 1-
dimensional projections.

Suffices to consider a    -net C over all possible directions, where    is a small positive constant.    

This gives the following finite LP:
Find             such that for all          , we have 

Let     be any feasible solution. Let            such that 
Then

or 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (III)

Main Idea: To robustly learn the mean of              ,  it suffices to learn the mean of “all” its 1-
dimensional projections.

So, for              , any feasible solution to the LP has  

To bound the sample complexity, note that the empirical median satisfies                with 
probability at least            after                               samples.

We need union bound over all           . Since                                       , for 
our algorithm works with probability at least 9/10.
Thus, sample complexity will be

Runtime: 



OUTLIER DETECTION ?



ON THE EFFECT OF CORRUPTIONS

Question: What is the effect of additive and subtractive corruptions?

Let’s study the simplest possible example of             .

Subtractive errors at rate     can: 
• Move the mean by at most
• Increase the variance by         and decrease it

by at most

Additive errors at rate     can: 
• Move the mean arbitrarily
• Increase the variance arbitrarily  and decrease it

by at most
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CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Detect when the empirical estimator may be compromised

= uncorrupted
= corrupted

There is no direction of large (> 1) variance



COMPARISON OF THREE APPROACHES

Three Algorithmic Approaches:
• Recursive Dimension-Halving [LRV’16]
• Iterative Filtering [DKKLMS’16]
• Soft Outlier Removal [DKKLMS’16]

Commonalities:
• Rely on Spectrum of Empirical Covariance to Robustly Estimate the Mean 
• Certificate of Robustness for the Empirical Estimator

Exploiting the Certificate:
• Recursive Dimension-Halving: Find “good” large subspace.
• Iterative Filtering: Check condition on entire space. If violated, filter outliers.
• Soft Outlier Removal: Convex optimization via approximate separation oracle.



Key Lemma: Let X1, X2, …, XN be an    -corrupted set of samples from
and                           , then for 

(1) (2)

with high probability we have: 

Take-away: An adversary needs to corrupt the second empirical moment in order to  corrupt 
the first empirical moment 

• [LRV’16]:

• [DKKLMS’16]:
in additive contamination model

in strong contamination model



PROOF OF KEY LEMMA: ADDITIVE CORRUPTIONS (I)

Let be a multi-set of additively   -corrupted samples from 
. Can assume wlog that          .

Note that                  , where G is the uncorrupted set of samples and B is the set of added 
corrupted samples.

Will express the empirical mean and covariance as sum of two terms, one depending on G and 
one on B.

Let                                          , similarly define      .   Have

When               , we have that 

Therefore, 



PROOF OF KEY LEMMA: ADDITIVE CORRUPTIONS (II)

Recall that            by assumption. 
We argued that 

Let’s express  in similar form.
By definition, 

Define                                                           and similarly 

Recall that since               , we have                             
Similarly, we have that                    
Therefore, 

Also by the definition of      we get 



PROOF OF KEY LEMMA: ADDITIVE CORRUPTIONS (III)

Putting everything together,

Can now finish argument. Recall that 

Note that

Choosing                           gives

In conclusion, if                     , then 
Since               , we have shown the following implication:

Choosing                gives the lemma.



PROOF OF KEY LEMMA: ADDITIVE CORRUPTIONS (IV)

So far assumed we are in infinite sample regime.

Essentially same argument holds in finite sample setting.
The following concentration inequalities suffice:

For                      , with high probability we have that 



PROOF OF KEY LEMMA: STRONG CORRUPTIONS (I)

Let be a multi-set of    -corrupted samples from 
. Can assume wlog that          .

Note that                           , where G is the uncorrupted set of samples, 
B is the added corrupted samples, and          is the subtracted set of samples.

Will express empirical mean and covariance as sum of three terms, depending on G , B and L.

Let                                          . Similarly define      and      .
We have

When              , we have that 

Therefore, 



PROOF OF KEY LEMMA: STRONG CORRUPTIONS (II)

Recall that           by assumption. 
We argued that 

Will express     in similar form.
By definition, 

Define                                                           . Similarly define
Let   

Recall that since                , we have                             
Similarly, we have that                    
Therefore, 

Also,  by the definition of         and          we get 



PROOF OF KEY LEMMA: STRONG CORRUPTIONS (III)

Putting everything together,

To finish argument, need to bound        and  

Claim: Have                                    and  

Assuming the claim holds, we get

This gives 



PROOF OF KEY LEMMA: STRONG CORRUPTIONS (IV)

We can now finish the argument.
We have shown that

Suppose that                        Then

Since                          , the final error is 

For                            ,  lemma follows. 



PROOF OF KEY LEMMA: STRONG CORRUPTIONS (V)

Recall that                                                                           Remains to prove:

Claim: We have                                    and 

Proof: By definition have

Since           , for any event,   

For any unit vector v:  

Finally, by definition we have that



OUTLINE

Part I: Introduction
• Motivation
• Robust Statistics in Low and High Dimensions
• This Talk

Part II: High-Dimensional Robust Mean Estimation
• Sample Complexity versus Robustness
• Certificate of Robustness
• Recursive Dimension Halving
• Iterative Filtering, Soft Outlier Removal 
• Extensions

Part III: Summary and Conclusions
• Beyond Robust Statistics: Unsupervised and Supervised Learning
• Future Directions



RECURSIVE DIMENSION-HALVING [LRV’16]

Recursive Procedure:

Step #1: Find large subspace where “standard” estimator works.
Step #2: Recurse on complement. 

(If dimension is small, use brute-force.)

Combine Results.

Can reduce dimension by factor of 2 in each recursive step.



FINDING A GOOD SUBSPACE (I)

• Good subspace G: one where the empirical mean works.

• By Key Lemma, sufficient condition is:

Projection of empirical covariance on G has no large eigenvalues.

• Also want G to be “high-dimensional”.

• How do we find such a subspace?



FINDING A GOOD SUBSPACE (II)

Good Subspace Lemma: Let X1, X2, …, XN be an additively 
-corrupted set of                              samples from . 

After naïve pruning, we have that

Corollary: Let W be the span of the bottom d/2 eigenvalues of    .  
Then W is a good subspace.



PROOF OF GOOD SUBSPACE LEMMA (I)

Let be a multi-set of additively   -corrupted samples from 
. Can assume wlog that          .

Note that                   , where G is the uncorrupted set of samples and B is 
the added corrupted samples. Let     be the subset of S obtained after naïve pruning. 
We know that , where             , and each            satisfies                       . 

Let                                                                be the empirical covariance of
and                                            be its spectrum. 

Want to show that 

This follows from the following claims:

Claim 1: 

Claim 2:



PROOF OF GOOD SUBSPACE LEMMA (II)

Let                                                              be the empirical covariance of
and                                         be its spectrum. 

Claim 1: 

Claim 2:

By Claim 1,                                                              . 

Moreover, 

By Claim 2,                                         

Therefore,                                           

which gives



PROOF OF GOOD SUBSPACE LEMMA (III)

Let                                                               be the empirical covariance of
and                                         be its spectrum. 

Claim 1: 

Proof: Recall that                     , where G is the uncorrupted set of samples and       is a subset 
of the added corrupted samples. Therefore, 

Denoting                                             ,  we have that 



PROOF OF GOOD SUBSPACE LEMMA (IV)

Let                                                               be the empirical covariance of
and                                         be its spectrum. 

Claim 2:

Proof: Recall that

Thus, 

Note that  

Moreover, for every                     we have                        .
Thus,   



RECURSIVE DIMENSION-HALVING ALGORITHM [LRV’16]

Algorithm works as follows:

• Remove gross outliers (e.g., naïve pruning).

• Let W, V be the span of bottom d/2 and upper d/2 eigenvalues of      respectively .

• Use empirical mean on W.

• Recurse on V. (If the dimension is one, use median.)

levels of the recursion           final error of 



OUTLINE

Part I: Introduction
• Motivation
• Robust Statistics in Low and High Dimensions
• This Talk

Part II: High-Dimensional Robust Mean Estimation
• Sample Complexity versus Robustness
• Certificate of Robustness
• Recursive Dimension Halving
• Iterative Filtering, Soft Outlier Removal 
• Extensions

Part III: Summary and Conclusions
• Beyond Robust Statistics: Unsupervised and Supervised Learning
• Future Directions



ITERATIVE FILTERING [DKKLMS’16]

Iterative Two-Step Procedure:

Step #1: Find certificate of robustness of “standard” estimator

Step #2: If certificate is violated, detect and remove outliers

Iterate on “cleaner” dataset.

General recipe that works for fairly general settings.

Let’s see how this works for robust mean estimation.



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let be the direction of maximum variance.

v

T [Klivans-Long-Servedio’09] 



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let     be the direction of maximum variance.

• Project all the points on the direction of .
• Find a threshold T such that

• Throw away all points x such that 

• Iterate on new dataset.



FILTERING SUBROUTINE: ANALYSIS SKETCH

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Claim: We remove more corrupted than uncorrupted points.

After a number of iterations, we have removed all corrupted points.

Eventually the empirical mean works



FILTERING SUBROUTINE: PSEUDO-CODE

Input:    -corrupted set S from 
Output: Set               that is    -corrupted, for some

OR robust estimate of the unknown mean 

1. Let             be the empirical mean and covariance of the set S. 
2. If , for an appropriate constant C > 0:

Output
3. Otherwise, let             be the top eigenvalue-eigenvector pair of     . 
4. Find           such that 

5. Return



SKETCH OF CORRECTNESS (I)

Claim: Can always find a threshold satisfying the Condition of Step 4.
Proof: 
By contradiction. Suppose that for all           we have 

Will use this to show that                     is smaller than it was assumed to be.   

Since the median is a robust estimator of the mean, it follows that for all 

Since           , for any event   , 

Therefore,



SKETCH OF CORRECTNESS (II)

Assume wlog Recall that 

So, it suffices to show that has small -variance, i.e., 
that                              is small. 
We have



SUMMARY: ROBUST MEAN ESTIMATION VIA FILTERING

Certificate of Robustness: 

“Spectral norm of empirical covariance is what it should be.”

Exploiting the Certificate: 

• Check if certificate is satisfied. 

• If violated, find “subspace” where behavior of outliers 
different than behavior of inliers.

• Use it to detect and remove outliers.

• Iterate on “cleaner” dataset.



SOFT OUTLIER REMOVAL

Let

Let                               Consider the convex set

Algorithm:
• Find
• Output  

• Adaptation of key lemma gives: For all            , we have:



SOFT OUTLIER REMOVAL

Let

Let                               Consider the convex set

Algorithm:
• Find
• Output  

Main Issue:       unknown. 



APPROXIMATE SEPARATION ORACLE

Input:    -corrupted set S and weight vector w
Output: Separation oracle for 

• Let  
• Let                           and  

• Let             be the top eigenvalue-eigenvector pair of        . 
• If                  , return “YES”. 
• Otherwise, return the hyperplane                         with 



DETERMINISTIC REGULARITY CONDITIONS

Convex program only requires the following conditions:

• For all                , the following hold: 
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ROBUST MEAN ESTIMATION: SUB-GAUSSIAN CASE

Information-theoretically optimal error, even in one-dimension. 

Theorem [DKKLMS’17]: Let                  If                        and D is sub-
Gaussian with identity covariance, then can efficiently recover      with, 

Problem: Given data                                  , of which                   come from 
some distribution D, estimate mean     of D.



OPTIMAL GAUSSIAN ROBUST MEAN ESTIMATION?

Recall [DKKLMS’16]: There is a                   time algorithm for robustly 
learning                within error 

Open Question: Is there a                    time algorithm for robustly 
learning                within error         ?         
How about          

?



GAUSSIAN ROBUST MEAN ESTIMATION: ADDITIVE ERRORS

Theorem [DKKLMS’18] There is a polynomial time algorithm with the 
following behavior:  Given             and                           corrupted samples 
from an unknown mean, identity covariance Gaussian distribution on       ,  
the algorithm finds a hypothesis mean       that satisfies

in additive contamination model.

• Robustness guarantee optimal up to         factor!
• For any univariate projection, mean robustly estimated by median. 



GENERALIZED FILTERING: ADDITIVE CORRUPTIONS

• Univariate filtering based on tails not sufficient to remove the incurred                                 
error, even for additive errors.

• Generalized Filter Idea: Filter using top - k eigenvectors of empirical covariance.

• Key Observation: Suppose that                             Then either

(1) has k eigenvalues at least              , or

(2) The error comes from a k-dimensional subspace.

• Choose 



COMPUTATIONAL LIMITATIONS TO ROBUST MEAN ESTIMATION

Theorem [DKS’17] Suppose                                 Any Statistical Query* 
algorithm that learns an    - corrupted Gaussian              in the strong
contamination model within distance

requires runtime 

Take-away: Any asymptotic improvement in error guarantee over 
[DKKLMS’16] algorithms may require super-polynomial time.

*Instead of accessing samples from distribution D, a Statistical Query 
algorithm can adaptively query                     , for any



ROBUST MEAN ESTIMATION: GENERAL CASE

• Sample-optimal, even without corruptions.

• Information-theoretically optimal error, even in one-dimension.

• Adaptation of Iterative Filtering. 

Theorem [DKKLMS’17, CSV’18] Let               If                           and D
has covariance                  , then we can efficiently recover      with , 

Problem: Given data                                  , of which                   come from 
some distribution D, estimate mean     of D.



ROBUST COVARIANCE ESTIMATION

Theorem: Let                   If                             then can efficiently recover 
such that

where f depends on the concentration of D.                                             

Problem: Given data                                  , of which                   come from 
some distribution D, estimate covariance     of D.

Main Idea: Use fourth-order moment tensors !
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SUMMARY AND CONCLUSIONS

• High-Dimensional Computationally Efficient Robust Estimation is Possible!

• First Computationally Efficient Robust Estimators with Dimension-
Independent Error Guarantees.

• General Methodologies for High-Dimensional Estimation Problems.



BEYOND ROBUST STATISTICS: ROBUST UNSUPERVISED LEARNING

Robustly Learning Graphical Models
[ Cheng-D-Kane-Stewart’16, 
D-Kane-Stewart’18]

Clustering in Mixture Models
[Charikar-Steinhardt-Valiant’17,
D-Kane-Stewart’18, 
Hopkins-Li’18, 
Kothari-Steinhardt-Steurer’18]

Computational/Statistical-Robustness Tradeoffs
[D-Kane-Stewart’17, D-Kong-Stewart’18]



BEYOND ROBUST STATISTICS: ROBUST SUPERVISED LEARNING

Malicious PAC Learning
[Klivans-Long-Servedio’10, 
Awasthi-Balcan-Long’14, 
D-Kane-Stewart’18]

Stochastic (Convex) Optimization
[Prasad-Suggala-Balakrishnan-Ravikumar’18,
D-Kamath-Kane-Li-Steinhardt-Stewart’18] 

Robust Linear Regression
[D-Kong-Stewart’18, 
Klivans-Kothari-Meka’18]
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RELATED WORKS

• Known Structure Bayes Nets [Cheng-D-Kane-Stewart’16] 

• Sparse models (e.g., sparse PCA, sparse regression) [Li’17, Du-Balakrishan-Singh’17, Liu-Shen-
Li-Caramanis’18]

• List-Decodable Learning [Charikar-Steinhardt-Valiant ’17, Meister-Valiant’18]

• Robust PAC Learning [Klivans-Long-Servedio’10, Awasthi-Balcan-Long’14, D-Kane-Stewart’18]

• “Robust estimation via SoS” (higher moments, learning mixture models) [Hopkins-Li’18, Kothari-
Steinhardt-Steurer’18]

• “SoS Free” learning of mixture models [D-Kane-Stewart’18] 

• Robust Regression [Klivans-Kothari-Meka’18, D-Kong-Stewart’18]

• Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar’18, D-Kamath-Kane-
Li-Steinhard-Stewart’18]

• …



FUTURE DIRECTIONS

Concrete Challenges:
• Richer Families of Problems and Models
• Connections to Non-convex Optimization
• Relation to other Notions of Algorithmic Stability

(Differential Privacy, Adaptive Data Analysis)
• Further applications (ML Security, Computer Vision).

General Algorithmic Theory of Robustness

How can we robustly learn rich representations of data, based on natural hypotheses about 
the structure in data?

Can we robustly test our hypotheses about structure in data before learning?

Thank you! 
Questions?


