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Huber’s Model

contamination proportion

parameter of interest

[Huber 1964]
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contamination proportion

parameter of interest
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Abstract: The development of selected robustness concepts since their
inception in the 1960's is sketched and their current status is reviewed.
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He looked into the water and saw that it was made up of a thousand thou 
sand thousand and one different currents, each one a different colour, weav 
ing in and out of one another like a liquid tapestry of breathtaking complex 
ity; and Iff explained that these were the Streams of Story, that each coloured
strand represented and contained a single tale.
(Salman Rushdie, Haroun and the Sea of Stories, 1990)

1 The first ten years
A good case can be made that modern robustness begins in 1960, with
the papers by J.W. Tukey on sampling from contaminated distributions,
and by F.J. Anscombe on the rejection of outliers. Tukey's paper drew
attention to the dramatic effects of seemingly negligible deviations from the
model, and it made effective use of asymptotics in combination with the
gross error model. Anscombe introduced a seminal insurance idea: sacrifice
some performance at the model in order to insure against ill effects caused
by deviations from it. Most of the basic ideas, concepts and methods of
robustness were invented in quick succession during the following years and

1F irst published in Student (1995), Vol.1, No.2, 75 86. Reproduced by permission of
the Presses Academiques Neuchatel, Switzerland.
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use of pseudo values is becoming common knowledge, even though it has
received only scant coverage in the literature. This trick is that one calcu 
lates robust fitted values & by iteratively applying the classical procedure
to the pseudo values y* = yι + r* instead of yim Here, the pseudo residual
ri = Ψ(ri) is obtained by cutting down the current residual τι = yi — yi with
the help of a function φ proportional to the desired influence function (i.e.
with the ̂  function defining an M estimate). For examples see in particu 
lar Bickel (1976, p. 167), Huber (1979), and Kleiner, Martin and Thomson
(1979). If ψ is chosen equal rather than merely proportional to the influ 
ence function, the classical formulas, when applied to the pseudo residuals
r* instead of the residuals, yield asymptotically correct error estimates for
ANOVA and other purposes (Huber 1981, p. 197).

There have been some very interesting extensions of influence function
ideas to time series (Kunsch, 1984).

3 Breakdown and outlier detection
For a long time, the breakdown point had been a step child of the robustness
literature. The paper by Donoho and Huber (1983) was specifically written
to give it more visibility. Recently, I have begun to wonder whether it has
given it too much, the suddenly fashionable emphasis on high breakdown
point procedures has become counter productive. One of the most striking
examples of the usefulness of the concept can be found in Hampel (1985):
the combined performance of outlier rejection followed by the sample mean
as an estimate of location is essentially determined by the breakdown of
the outlier detection procedure.

4 Studentizing
Whenever we have an estimate, we ought to provide an indication of its
statistical accuracy, say by giving a 95% confidence interval. This is not
particularly difficult if the number of observations is very large, so that the
estimate is asymptotically normal with an accurately estimable standard
error, or also in one parameter problems without nuisance parameter, where
the finite sample theory of Huber (1968) can be applied.

Otherwise, we end up with a tricky problem of studentization. To my
knowledge, there has not been much progress beyond the admittedly un 
satisfactory initial paper of Huber (1970). There are not only many open
questions with regard to this crucially important problem, it is even open
what questions one should ask! A sketch of the principal issues follows.

In the classical normal case, it follows from sufficiency of (x, s) and an

…
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Tukey’s depth is not a special 
case of regression depth.
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Multi-task Regression Depth
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Sparse Linear Regression
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5 Discussion

5.1 other distributions?

5.2 infinite dimensional version? depth for linear operator?
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Chao Gao, Department of Statistics, Yale University

c� September 17, 2015 1

X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

1

2

1

3

p

n
_ ✏2 p

✓
1

n
_ ✏2

◆

Theorem 1. Write P(✏,✓,Q) = (1� ✏)N(✓, Ip) + ✏Q. There are constants C, c > 0 such that

inf
✓̂
sup
✓,Q

P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� C

⇣ p

n
_ ✏2

⌘�
� c,

for any ✏ 2 [0, 1]. For the coordinate median ✓̂, there are constants C, c > 0 such that

sup
✓,Q

P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� Cp

✓
1

n
_ ✏2

◆�
� c,

for any ✏ 2 [0, 1].

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?
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���
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� Cp
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c� August 12, 2018 1

D(�, {Xi}ni=1

) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1

Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2

_ ✏2

�2

k · k2

k·k2
F

k · k2
op

k · k2`1

M(✏) ⇣ min
�>0

⇢
logN (�,⇥,TV(·, ·))

n
+ �2

�
_ ✏2.



Covariance Matrix

Given i.i.d. observations {Xi}ni=1

from P, the matrix depth of � with respect to {Xi}ni=1

is defined as

DU (�, {Xi}ni=1

) = min
u2U

min

(

1

n

n
X

i=1

I{|uTXi|2  uT�u}, 1
n

n
X

i=1

I{|uTXi|2 � uT�u}
)

. (4)

A general estimator for �⌃ is given by

�̂ = argmax
�2F

DU (�, {Xi}ni=1

), (5)

where F is some matrix class to be specified later. The estimator of ⌃ is

⌃̂ = �̂/�, (6)

where � is defined through (3).

3.2 General Covariance Matrix

Consider the following covariance matrix class with bounded spectra

F(M) =
�

⌃ = ⌃T 2 Rp⇥p : ⌃ ⌫ 0, s
max

(⌃)  M
 

,

where ⌃ ⌫ 0 means ⌃ is positive semi-definite and M > 0 is some absolute constant that

does not scale with p or n.

To define an estimator, we need to specify a subset U ⇢ Sp�1 in the depth function. Let

Up be a (1/4)-net of the unit sphere Sp�1 in the Euclidean space in Rp. This means for any

u 2 Sp�1, there exists a u0 2 Up such that ku� u0k  1/4. According to [45], such Up can be

picked with cardinality bounded by 9p. Define

�̂ = argmax
�⌫0

DUp(�, {Xi}ni=1

). (7)

When (7) has multiple maxima, �̂ is understood as any positive semi-definite matrix that

attains the deepest level. A final estimator of ⌃ is defined by ⌃̂ = �̂/� as in (6). The

statistical property of ⌃̂ is stated in the following theorem.

Theorem 3.1. Assume that ✏ < 1/4 and p/n < c for some su�ciently small constant c.

Then, we have

k⌃̂� ⌃k2
op

 C
⇣ p

n
_ ✏2

⌘

,

with P
(✏,⌃,Q)

-probability at least 1� exp
�

�C 0(p+ n✏2)
�

uniformly over all Q and ⌃ 2 F(M),

where C,C 0 > 0 are some absolute constants.

Remark 3.1. Due to the computational consideration, we chose a (1/4)-net Up of Sp�1 and

defined our estimator via the matrix depth relative to Up. In fact, it can be shown that the

result in Theorem 3.1 also holds if we define �̂ = argmax
�⌫0

D(�, {Xi}ni=1

) relative to Sp�1.
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�̂ = argmax
�⌫0

D(�, {Xi}ni=1

)

X
1

, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏G

X
1

, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏G

|f̂(0)� f(0)|2

���⌃̂� ⌃
���2
op

.P

⇣ p

n
_ ✏2

⌘

k✓̂ � ✓k2 .P

⇣ p

n
_ ✏2

⌘

max
✓2Rp

min
kuk=1

(
1

n

nX
i=1

I{uT log p✓(Xi)  0}� P✓

�
uT log p✓(X)  0

�)

max
✓2Rp

min
kuk=1

(
1

n

nX
i=1

I{uT log p✓(Xi)  0}
)

log
p
˜✓

p✓
⇡ (✓̃ � ✓)Tr log p✓

Q =
n
N(0,⌃) : ⌃ 2 Rp⇥p

o

Q = Q̃ = {p✓ : ✓ 2 Rp}

Q̃ =
n
N(0, ⌃̃) : ⌃̃ = ⌃+ ruuT , kuk = 1

o

Q =
n
N(✓, Ip) : ✓ 2 Rp

o

Q̃ =
n
N(✓̃, Ip) : ✓̃ 2 Nr(✓)

o
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Given i.i.d. observations {Xi}ni=1

from P, the matrix depth of � with respect to {Xi}ni=1

is defined as

DU (�, {Xi}ni=1

) = min
u2U

min

(

1

n

n
X

i=1

I{|uTXi|2  uT�u}, 1
n

n
X

i=1

I{|uTXi|2 � uT�u}
)

. (4)

A general estimator for �⌃ is given by

�̂ = argmax
�2F

DU (�, {Xi}ni=1

), (5)

where F is some matrix class to be specified later. The estimator of ⌃ is

⌃̂ = �̂/�, (6)

where � is defined through (3).

3.2 General Covariance Matrix

Consider the following covariance matrix class with bounded spectra

F(M) =
�

⌃ = ⌃T 2 Rp⇥p : ⌃ ⌫ 0, s
max

(⌃)  M
 

,

where ⌃ ⌫ 0 means ⌃ is positive semi-definite and M > 0 is some absolute constant that

does not scale with p or n.

To define an estimator, we need to specify a subset U ⇢ Sp�1 in the depth function. Let

Up be a (1/4)-net of the unit sphere Sp�1 in the Euclidean space in Rp. This means for any

u 2 Sp�1, there exists a u0 2 Up such that ku� u0k  1/4. According to [45], such Up can be

picked with cardinality bounded by 9p. Define

�̂ = argmax
�⌫0

DUp(�, {Xi}ni=1

). (7)

When (7) has multiple maxima, �̂ is understood as any positive semi-definite matrix that

attains the deepest level. A final estimator of ⌃ is defined by ⌃̂ = �̂/� as in (6). The

statistical property of ⌃̂ is stated in the following theorem.

Theorem 3.1. Assume that ✏ < 1/4 and p/n < c for some su�ciently small constant c.

Then, we have
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,
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(✏,⌃,Q)

-probability at least 1� exp
�

�C 0(p+ n✏2)
�

uniformly over all Q and ⌃ 2 F(M),

where C,C 0 > 0 are some absolute constants.
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Theorem [CGR15]. For some 

with high probability uniformly over         .
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X
1

, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1

, we have DU (�⌃, P⌃

) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.

Us =

(
u 2 Sp�1 :

)

2s

C > 0,

When ✏ = 0, the likelihood ratio test

� = I
(

nY
i=1

dP
2

dP
1

(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.

Consider

H
0

: P 2 {P : H(P, P
1

)  �} , H
1

: P 2 {P : H(P, P
2

)  �}.

There exists a testing function � such that

sup
P2H0

P�+ sup
P2H1

P (1� �)  2 exp

✓
�1

2
n (H(P

1

, P
2

)� 2�)2
◆
.

However, by convexity of H2(·, ·),

{(1� ✏)P
1

+ ✏Q : Q} ⇢
n
P : H(P, P

1

) 
p
2✏

o
.
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A N(�(k, p, q), 1).
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 N(0, 1)

T � E3 =
(k � 1)(p� q)3

k3

T �
✓
V

E

◆
3

=
(k � 1)(p� q)3

k3

Chao Gao, Department of Statistics, Yale University

c� August 12, 2018 1

D(�, {Xi}ni=1

) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1
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Covariance Matrix

The convergence rate for the deepest covariance is p/n _ ✏2 under the squared operator

norm. This rate is minimax optimal over the matrix class F(M) under the ✏-contamination

model.

Theorem 3.2. There are some constants C, c > 0 such that

inf
ˆ

⌃

sup
⌃2F(M)

sup
Q

P
(✏,⌃,Q)

n

k⌃̂� ⌃k2
op

� C
⇣ p

n
_ ✏2

⌘o

� c,

for any ✏ 2 [0, 1].

3.3 Bandable Covariance Matrix

In many high-dimensional applications such as time series data in finance, the covariates of

data are collected in an ordered fashion. This leads to a natural banded estimator of the

covariance matrix [3, 6]. Define the class of covariance matrices with a banded structure by

Fk = {⌃ = (�ij) ⌫ 0 : �ij = 0 if |i� j| > k}.

Next, we propose a notion of matrix depth function relative to some subset Uk ⇢ Sp�1 defined

particularly for the class Fk. For any l
1

, l
2

2 [p], define V
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How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1
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I{uTXi > uT ⌘}.
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Theorem 1. Write P(✏,✓,Q) = (1� ✏)N(✓, Ip) + ✏Q. There are constants C, c > 0 such that

inf
✓̂
sup
✓,Q

P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� C

⇣ p

n
_ ✏2

⌘�
� c,

for any ✏ 2 [0, 1]. For the coordinate median ✓̂, there are constants C, c > 0 such that

sup
✓,Q

P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� Cp

✓
1

n
_ ✏2

◆�
� c,

for any ✏ 2 [0, 1].

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Proposition 1. Define � through the equation

�(
p
� ) =

3

4
,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1
, we have DU (�⌃, P⌃) =

1

2
.

U = Sp�1 = {u 2 Rp : kuk = 1}.

Uk =

(
u 2 Sp�1 :

)
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3.3 Bandable Covariance Matrix

In many high-dimensional applications such as time series data in finance, the covariates of

data are collected in an ordered fashion. This leads to a natural banded estimator of the

covariance matrix [3, 6]. Define the class of covariance matrices with a banded structure by

Fk = {⌃ = (�ij) ⌫ 0 : �ij = 0 if |i� j| > k}.

Next, we propose a notion of matrix depth function relative to some subset Uk ⇢ Sp�1 defined

particularly for the class Fk. For any l
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2

2 [p], define V
[l1,l2] = {u = (ui) 2 Sp�1 : ui =

0 if i /2 [l
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]}. Then V
[l1,l2] is equivalent to Sl2�l1 on the coordinates {l
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, ..., l
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a (1/4)-net of V

[l1,l2], denoted by V̄
[l1,l2], whose cardinality can be bounded by 9l2�l1+1. The

depth function is defined relatively to the following subset

Uk = [p+1�2k
l=1

V̄
[l,l+2k�1]

if 2k  p, and Uk = V̄
[1,p] if 2k > p.

Then, a robust covariance matrix estimator with banded structure is defined as

�̂ = arg max
�2Fk

DUk(�, {Xi}ni=1

). (8)

An estimator for ⌃ is ⌃̂ = �̂/� as in (6).

Remark 3.2. The cardinality of Uk is bounded by p⇥ 92k. When k ⌧ p, this is significantly

smaller than that of the set used in (7), because we have taken advantage of the banded

structure.

To study the statistical property of ⌃̂, we consider the class Fk(M) = Fk \ F(M). The

convergence rate of ⌃̂ under the ✏-contamination model is stated in the following theorem.

Theorem 3.3. Assume that ✏ < 1/4 and (k+log p)/n < c for some su�ciently small constant

c. Then, we have
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with P
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uniformly over all Q and ⌃ 2
Fk(M), where C,C 0 > 0 are some absolute constants.
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Given i.i.d. observations {Xi}ni=1

from P, the matrix depth of � with respect to {Xi}ni=1

is defined as

DU (�, {Xi}ni=1

) = min
u2U

min

(

1

n

n
X

i=1

I{|uTXi|2  uT�u}, 1
n

n
X

i=1

I{|uTXi|2 � uT�u}
)

. (4)

A general estimator for �⌃ is given by

�̂ = argmax
�2F

DU (�, {Xi}ni=1

), (5)

where F is some matrix class to be specified later. The estimator of ⌃ is

⌃̂ = �̂/�, (6)

where � is defined through (3).

3.2 General Covariance Matrix

Consider the following covariance matrix class with bounded spectra

F(M) =
�

⌃ = ⌃T 2 Rp⇥p : ⌃ ⌫ 0, s
max

(⌃)  M
 

,

where ⌃ ⌫ 0 means ⌃ is positive semi-definite and M > 0 is some absolute constant that

does not scale with p or n.

To define an estimator, we need to specify a subset U ⇢ Sp�1 in the depth function. Let

Up be a (1/4)-net of the unit sphere Sp�1 in the Euclidean space in Rp. This means for any

u 2 Sp�1, there exists a u0 2 Up such that ku� u0k  1/4. According to [45], such Up can be

picked with cardinality bounded by 9p. Define

�̂ = argmax
�⌫0
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). (7)

When (7) has multiple maxima, �̂ is understood as any positive semi-definite matrix that

attains the deepest level. A final estimator of ⌃ is defined by ⌃̂ = �̂/� as in (6). The

statistical property of ⌃̂ is stated in the following theorem.

Theorem 3.1. Assume that ✏ < 1/4 and p/n < c for some su�ciently small constant c.

Then, we have

k⌃̂� ⌃k2
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⌘

,

with P
(✏,⌃,Q)

-probability at least 1� exp
�

�C 0(p+ n✏2)
�

uniformly over all Q and ⌃ 2 F(M),

where C,C 0 > 0 are some absolute constants.

Remark 3.1. Due to the computational consideration, we chose a (1/4)-net Up of Sp�1 and

defined our estimator via the matrix depth relative to Up. In fact, it can be shown that the

result in Theorem 3.1 also holds if we define �̂ = argmax
�⌫0

D(�, {Xi}ni=1

) relative to Sp�1.
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1

2
.

U = Sp�1 = {u 2 Rp : kuk = 1}.

Uk =

(
u 2 Sp�1 :

)
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X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?
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Theorem 1. Write P(✏,✓,Q) = (1� ✏)N(✓, Ip) + ✏Q. There are constants C, c > 0 such that
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for any ✏ 2 [0, 1]. For the coordinate median ✓̂, there are constants C, c > 0 such that
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for any ✏ 2 [0, 1].

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Proposition 1. Define � through the equation

�(
p
� ) =

3

4
,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1
, we have DU (�⌃, P⌃) =

1

2
.

U = Sp�1 = {u 2 Rp : kuk = 1}.

Uk =

(
u 2 Sp�1 :

)

2k

The convergence rate for the deepest covariance is p/n _ ✏2 under the squared operator

norm. This rate is minimax optimal over the matrix class F(M) under the ✏-contamination

model.

Theorem 3.2. There are some constants C, c > 0 such that

inf
ˆ

⌃
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P
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n
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n
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for any ✏ 2 [0, 1].

3.3 Bandable Covariance Matrix

In many high-dimensional applications such as time series data in finance, the covariates of

data are collected in an ordered fashion. This leads to a natural banded estimator of the

covariance matrix [3, 6]. Define the class of covariance matrices with a banded structure by

Fk = {⌃ = (�ij) ⌫ 0 : �ij = 0 if |i� j| > k}.

Next, we propose a notion of matrix depth function relative to some subset Uk ⇢ Sp�1 defined

particularly for the class Fk. For any l
1

, l
2

2 [p], define V
[l1,l2] = {u = (ui) 2 Sp�1 : ui =

0 if i /2 [l
1

, l
2

]}. Then V
[l1,l2] is equivalent to Sl2�l1 on the coordinates {l

1

, ..., l
2

}. There exists
a (1/4)-net of V

[l1,l2], denoted by V̄
[l1,l2], whose cardinality can be bounded by 9l2�l1+1. The

depth function is defined relatively to the following subset

Uk = [p+1�2k
l=1

V̄
[l,l+2k�1]

if 2k  p, and Uk = V̄
[1,p] if 2k > p.

Then, a robust covariance matrix estimator with banded structure is defined as

�̂ = arg max
�2Fk

DUk(�, {Xi}ni=1

). (8)

An estimator for ⌃ is ⌃̂ = �̂/� as in (6).

Remark 3.2. The cardinality of Uk is bounded by p⇥ 92k. When k ⌧ p, this is significantly

smaller than that of the set used in (7), because we have taken advantage of the banded

structure.

To study the statistical property of ⌃̂, we consider the class Fk(M) = Fk \ F(M). The

convergence rate of ⌃̂ under the ✏-contamination model is stated in the following theorem.

Theorem 3.3. Assume that ✏ < 1/4 and (k+log p)/n < c for some su�ciently small constant

c. Then, we have
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n
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,

with P
(✏,⌃,Q)

-probability at least 1 � exp
�

C 0(k + log p+ n✏2)
�

uniformly over all Q and ⌃ 2
Fk(M), where C,C 0 > 0 are some absolute constants.
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Given i.i.d. observations {Xi}ni=1

from P, the matrix depth of � with respect to {Xi}ni=1

is defined as

DU (�, {Xi}ni=1

) = min
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(
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n
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)

. (4)

A general estimator for �⌃ is given by

�̂ = argmax
�2F

DU (�, {Xi}ni=1

), (5)

where F is some matrix class to be specified later. The estimator of ⌃ is

⌃̂ = �̂/�, (6)

where � is defined through (3).

3.2 General Covariance Matrix

Consider the following covariance matrix class with bounded spectra

F(M) =
�

⌃ = ⌃T 2 Rp⇥p : ⌃ ⌫ 0, s
max

(⌃)  M
 

,

where ⌃ ⌫ 0 means ⌃ is positive semi-definite and M > 0 is some absolute constant that

does not scale with p or n.

To define an estimator, we need to specify a subset U ⇢ Sp�1 in the depth function. Let

Up be a (1/4)-net of the unit sphere Sp�1 in the Euclidean space in Rp. This means for any

u 2 Sp�1, there exists a u0 2 Up such that ku� u0k  1/4. According to [45], such Up can be

picked with cardinality bounded by 9p. Define

�̂ = argmax
�⌫0

DUp(�, {Xi}ni=1

). (7)

When (7) has multiple maxima, �̂ is understood as any positive semi-definite matrix that

attains the deepest level. A final estimator of ⌃ is defined by ⌃̂ = �̂/� as in (6). The

statistical property of ⌃̂ is stated in the following theorem.

Theorem 3.1. Assume that ✏ < 1/4 and p/n < c for some su�ciently small constant c.

Then, we have
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Remark 3.1. Due to the computational consideration, we chose a (1/4)-net Up of Sp�1 and

defined our estimator via the matrix depth relative to Up. In fact, it can be shown that the

result in Theorem 3.1 also holds if we define �̂ = argmax
�⌫0
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) relative to Sp�1.
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How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1

, we have DU (�⌃, P⌃

) =
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.

DU
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U = Sp�1 = {u 2 Rp : kuk = 1}.
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)
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C > 0,

When ✏ = 0, the likelihood ratio test
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nY
i=1
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dP
1

(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.
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p
2✏

o
.
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Ê3(1� Ê)3 + 3Ê4(1� Ê)2

 N(0, 1)

T � E3 =
(k � 1)(p� q)3

k3

T �
✓
V

E

◆
3

=
(k � 1)(p� q)3

k3

Chao Gao, Department of Statistics, Yale University

c� August 11, 2018 1

k⌃̂� ⌃k2
op

 C
⇣ p

n
_ ✏2

⌘

⌃ 2 Fk, Q

E =
1

k
p+

k � 1

k
q

k⌃̂� ⌃k2
op

 C

✓
k + log p

n
_ ✏2

◆

T =
1

k2
p3 +

3(k � 1)

k2
pq2 +

(k � 1)(k � 2)

k2
q3

E = (Ed)2
✓
1

k
p+

k � 1

k
q

◆
,

V = (Ed)2
✓
1

k
p+

k � 1

k
q

◆
2

,

T =

✓
1

k2
p3 +

3(k � 1)

k2
pq2 +

(k � 1)(k � 2)

k2
q3
◆
.

Ed2 = 1

Their empirical counterparts are defined as
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 N(0, 1)

T � E3 =
(k � 1)(p� q)3

k3

T �
✓
V

E

◆
3

=
(k � 1)(p� q)3

k3



Covariance Matrix
Theorem 3.3 states that the convergence rate for ⌃̂ under the class Fk(M) is k+log p

n _ ✏2.

When ✏2 . k+log p
n , this is exactly the minimax rate in [6]. Therefore, Theorem 3.3 extends

the result of [6] to a robust setting. If the rate k+log p
n is pursued, then the maximum number

of outliers that ⌃̂ can tolerate is O(
p

n(k + log p)).

Besides matrices with exact banded structure, we also consider the following class of

bandable matrices. That is,

F↵(M,M
0

) =

8

<

:

⌃ = (�ij) 2 F(M) : max
j

X

{i:|i�j|>k}

|�ij |  M
0

k�↵

9

=

;

.

Theorem 3.4. Consider the robust banded estimator ⌃̂ with k = dn
1

2↵+1 e. Assume that

✏ < 1/4 and n� 2↵
2↵+1 + log p

n < c for some su�ciently small constant c. Then, we have
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n
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◆

,

with P
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⇣
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n

n
1

2↵+1 + log p, p
o

+ n✏2)
⌘

uniformly over

all Q and ⌃ 2 F↵(M,M
0

), where C,C 0 > 0 are some absolute constants.

To close this section, we show in the following theorem that both rates in Theorem 3.3

and Theorem 3.4 are minimax optimal under the ✏-contamination model.

Theorem 3.5. Assume p  exp(�n) for some � > 0. There are some constants C, c > 0

such that

inf
ˆ
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⌃2Fk(M)

sup
Q

P
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for any ✏ 2 [0, 1].

3.4 Sparse Covariance Matrix

We consider sparse covariance matrices in this section. For a subset of coordinates S ⇢ [p],

define G(S) = {G = (gij) 2 Rp⇥p : gij = 0 if i /2 S or j /2 S}. Define G(s) = [S⇢[p]:|S|sG(S).
Then, the sparse covariance class is

Fs = {⌃ ⌫ 0 : ⌃� diag(⌃) 2 G(s)} .

In other words, there are s covariates in a block that are correlated with each other. The

remaining covariates are independent from this block and from each other. Such sparsity

structure has been extensively studied in the problem of sparse principal component analysis

9
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Ê =
1�
n
2

�
X

1i<jn

Aij ,

V̂ =
1�
n
3

�
X

1i<j<kn

AijAik +AijAjk +AikAjk

3
,

T̂ =
1�
n
3

�
X

1i<j<kn

AijAikAjk.

q�
n
3

�
(T̂ � Ê3)
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singular value decomposition to �̂ in (9). That is, �̂ = V̂ D̂V̂ T . Then, V̂ V̂ T is a robust
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Advantages of Tukey Median

• A well-defined objective function

• Does not need to know 

• Does not need to know 

• Optimal for any elliptical distribution
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A practically good algorithm?



f-Learning
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2 f-GAN

An f-divergence is defined as

Df (PkQ) =

Z
f

✓
p

q

◆
dQ.

Since

f(u) = sup
t
(tu� f

⇤(t)),

it is not hard to derive the following variational form of f-divergence,

Df (PkQ) = sup
T

[EX⇠PT (X)� EX⇠Qf
⇤(T (X))] .

The optimal T is achieved by

T (x) = f

0
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p(x)

q(x)

◆
.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is

f

⇤(t) = � log(1� e

t).

Therefore, with this particular f , we get

Df (PkQ) = sup
T

h
EX⇠PT (X) + EX⇠Q log(1� e

T (X))
i
.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation

procedure

min
Q2Q

max
Q̃2Q
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n
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0
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q(Xi)
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)
,

which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f

0(x) = 1 + log x,

and

f

⇤(t) = exp(t� 1).

Then, the procedure becomes

min
Q2Q

max
Q̃2Q

1

n

nX

i=1

log
q̃(Xi)

q(Xi)
= 2 min

Q2Q
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log
1

q(Xi)
,

which is the MLE.

f-divergence
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2 f-GAN

An f-divergence is defined as
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Z
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Since
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Its conjugate function is
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.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation

procedure

min
Q2Q

max
Q̃2Q

(
1

n

nX

i=1

f

0
✓
q̃(Xi)

q(Xi)

◆
�
Z

f

⇤
✓
f

0
✓
q̃

q

◆◆
dQ

)
,

which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are
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and
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3 Total Variation

Choose

f(x) = (x� 1)+.

Then, it is easy to see that
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4 Hellinger Divergence

When

f(x) = 2� 2
p
x ,

we get the Hellinger divergence
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The conjugate function and derivative of f are

f

⇤(t) = �1

t

� 2, for t < 0,

and

f

0(x) = � 1p
x

.

This leads to the estimation procedure
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5 A Related Divergence Function
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2 f-GAN

An f-divergence is defined as

Df (PkQ) =
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Since

f(u) = sup
t
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⇤(t)),

it is not hard to derive the following variational form of f-divergence,
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⇤(T (X))] .
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.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is
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⇤(t) = � log(1� e

t).

Therefore, with this particular f , we get

Df (PkQ) = sup
T
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T (X))
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.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f

0(x) = 1 + log x,

and
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3 Total Variation

Choose

f(x) = (x� 1)+.

Then, it is easy to see that

Df (PkQ) =
1

2
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|p� q|,

which is the total variation distance. The derivative and conjugate functions are
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0(x) = I{x � 1},

and

f

⇤(t) = t, for t 2 [0, 1].

The variational form of total variation is
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With some rearrangement, we can write it as
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4 Hellinger Divergence

When

f(x) = 2� 2
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we get the Hellinger divergence
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The conjugate function and derivative of f are
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2 f-GAN

An f-divergence is defined as

Df (PkQ) =
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Since

f(u) = sup
t
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⇤(t)),

it is not hard to derive the following variational form of f-divergence,
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⇤(T (X))] .

The optimal T is achieved by

T (x) = f
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GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is

f

⇤(t) = � log(1� e

t).

Therefore, with this particular f , we get

Df (PkQ) = sup
T

h
EX⇠PT (X) + EX⇠Q log(1� e

T (X))
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.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation

procedure
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f

0(x) = 1 + log x,

and

f

⇤(t) = exp(t� 1).

Then, the procedure becomes
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3 Total Variation

Choose

f(x) = (x� 1)+.

Then, it is easy to see that

Df (PkQ) =
1

2

Z
|p� q|,

which is the total variation distance. The derivative and conjugate functions are

f

0(x) = I{x � 1},

and

f

⇤(t) = t, for t 2 [0, 1].

The variational form of total variation is

sup
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[EX⇠PT (X)� EX⇠QT (X)] .

With some rearrangement, we can write it as

1� inf
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The procedure corresponding to this f is
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As an application, we consider the class
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After some rearrangement, we get the following formula
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This is very close to the definition of Tukey’s median. Suppose we consider only a neigh-
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4 Hellinger Divergence

When

f(x) = 2� 2
p
x ,

we get the Hellinger divergence

Df (PkQ) =
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(
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The conjugate function and derivative of f are
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An f-divergence is defined as

Df (PkQ) =

Z
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Since

f(u) = sup
t
(tu� f

⇤(t)),

it is not hard to derive the following variational form of f-divergence,

Df (PkQ) = sup
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[EX⇠PT (X)� EX⇠Qf
⇤(T (X))] .

The optimal T is achieved by

T (x) = f
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.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is
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⇤(t) = � log(1� e

t).

Therefore, with this particular f , we get

Df (PkQ) = sup
T

h
EX⇠PT (X) + EX⇠Q log(1� e
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.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f

0(x) = 1 + log x,

and

f

⇤(t) = exp(t� 1).

Then, the procedure becomes
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3 Total Variation

Choose

f(x) = (x� 1)+.

Then, it is easy to see that

Df (PkQ) =
1

2

Z
|p� q|,

which is the total variation distance. The derivative and conjugate functions are

f

0(x) = I{x � 1},

and

f

⇤(t) = t, for t 2 [0, 1].

The variational form of total variation is

sup
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With some rearrangement, we can write it as

1� inf
T

[EX⇠P (1� T (X)) + EX⇠QT (X)] .

The procedure corresponding to this f is

min
Q2Q

max
Q̃2Q

(
1

n

nX

i=1

I
⇢
q̃(Xi)

q(Xi)
� 1

�
�Q

✓
q̃

q

� 1

◆)
.

As an application, we consider the class

Q =
�
N(✓,�2

Id) : ✓ 2 R
 
.

After some rearrangement, we get the following formula

min
✓

max
kuk=1

max
r�0

(
1

n

nX

i=1

I{uT (Xi � ✓) � r}� �
⇣
� r

2�

⌘)
.

This is very close to the definition of Tukey’s median. Suppose we consider only a neigh-

borhood of ✓ as its adversarial, namely r = 0, then the above procedure becomes

min
✓

max
kuk=1

1

n

nX

i=1

I{uT (Xi � ✓) � 0}� 1

2
.

Chao Gao, Department of Statistics, Yale University

c� April 16, 2018 1

min
Q2Q

max
T2T

(
1

n

nX
i=1

T (Xi)�
Z

f⇤ (T ) dQ

)

m �! 1

f(x) = x log x

= sup
˜Q

(
EX⇠P f

0

 
dQ̃(X)

dQ(X)

!
� EX⇠Qf

⇤

 
f 0

 
dQ̃(X)

dQ(X)

!!)

n �! n

log n

m �! 1, n �! n

log n

�2

⇣
(1� ✏)f + ✏g, (1� ✏) ef + ✏eg⌘ . n�1

bf(0) = 1

n(1� ✏)

nX
i=1

1

h
K

✓
Xi

h

◆

bf(0) = 1

n

nX
i=1

1

h
K

✓
Xi

h

◆

bf(0) = 1

n

nX
i=1

1

h
K

✓
Xi

h

◆
⇣ bf(0)� f(0)

⌘
2

.
⇣ bf(0)� E bf(0)⌘2 + ⇣E bf(0)� f(0)

⌘
2

⇣ bf(0)� f(0)
⌘
2

.
⇣ bf(0)� E bf(0)⌘2 + ✓E bf(0)� f(0)� ✏

1� ✏
g(0)

◆
2

+

✓
✏

1� ✏
g(0)

◆
2

h = n
� 1

2�0+1 ^ n
� 1

2�1+1 ✏
� 2

2�1+1

Liu & Gao, Department of Statistics, University of Chicago

c� April 3, 2018 4

4 Hellinger Divergence

When
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This means that TV-GAN with a logistic regression (or a zero hidden-layer neural net)

classifier gives a sharper variational lower bound than TV-Learning. Moreover, we know

that when P = P
✓

, TV-Learning is a sharp variational lower bound, which immediately

implies that the logistic regression TV-GAN is also sharp.

We know that sample versions of TV-Learning and Tukey depth gives a robust

estimator b✓ that achieves the minimax rate kb✓ � ✓k2 . p

n
_ ✏2 with high probability. The

question is whether the TV-GAN with a logistic regression also leads to a robust estimator

that is minimax optimal. The answer is yes. Consider the estimator
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Theorem 2.1. With i.i.d. observations X
1

, ..., X
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⇠ (1� ✏)N(✓, I
p

) + ✏Q, we have
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with high probability uniformly over all ✓ 2 Rp

and all Q.

I believe the theorem is correct and the proof should not be too hard, but I still need

some time to finish the proof. The only technical result I need is
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In general, one will use a neural network with h-layers. The estimator is defined as
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Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2

_ ✏2

�2

k · k2

Chao Gao, Department of Statistics, Yale University

c� August 12, 2018 1

N(⌘, Ip)

✓ 2 Rp, Q

kb✓ � ✓k2  C
⇣ p

n
_ ✏2

⌘

D(�, {Xi}ni=1

) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

max
⌃

min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT⌃u}, 1
n

nX

i=1

I{|uTXi|2 < uT⌃u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1
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loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�
p p

n _ ✏
�

= ✏. Figure
7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
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tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp

) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.
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the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
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objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
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n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�
p p

n _ ✏
�

= ✏. Figure
7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp

) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)

+

is robust, because this corresponds to various
depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D
JS

(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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Theorem [GLYZ18+]. For a neural network 
class     with at least one hidden layer and 
appropriate regularization, we have 

with high probability uniformly over             .
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loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�
p p

n _ ✏
�

= ✏. Figure
7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp

) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)

+

is robust, because this corresponds to various
depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D
JS

(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

JS-GAN
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Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2

_ ✏2

�2

k · k2

k·k2
F

k · k2
op

k · k2`1

M(✏) ⇣ min
�>0

⇢
logN (�,⇥,TV(·, ·))

n
+ �2

�
_ ✏2.

M(✏) & M(0) _ !(✏,⇥)

k⌃̂� ⌃k2
op

 C
⇣ p

n
_ ✏2

⌘

⌃ 2 F↵, Q

E =
1

k
p+

k � 1

k
q

k = n
1

2↵+1 ^ p

k⌃̂� ⌃k2
op

 C


min

⇢
n� 2↵

2↵+1 +
log p

n
,
p

n

�
_ ✏2

�



Robust Density Estimation
Chao Gao, Department of Statistics, Yale University

c� April 9, 2018 1

X
1

, ..., Xn ⇠ (1� ✏)f + ✏g

X
1

, ..., Xn ⇠ (1� ✏)P✓ + ✏G

bk = argmax
k

⇡(k|X)

ek = argmax
k

(⇡(k � 1|X) + ⇡(k|X))

�  ↵

k = 1

k = n
1

2↵+1

sup
✓02⇥↵(B)

Pn
✓0⇧

⇣
k✓ � ✓

0

k2
���X⌘

⇣ n� 2�
2�+1

sup
✓02⇥↵(B)

Pn
✓0
bQ
[k]k✓ � ✓

0

k2 ⇣ n� 2↵
2↵+1

⇧
�
D⇤ (P✓0kP✓)  ✏2n

�
� ⇧ (⌦j⇥j)

=
Y
j

Z
✓j2⇥j

d⇧j(✓j)

� exp
�
�C

1

n✏2n
�

bQ
VB

= bQ
EB

d bQ
EB

(✓) /
Y
jbk

fj(✓j) exp
⇣
�n

2
(✓j � Yj)

2

⌘Y
j>bk

�
0

(✓j)

d[ bQ
EB

(✓)]j/d✓j =

8><>:
/ fj(✓j) exp

⇣
�n

2
(✓j � Yj)

2

⌘
, j  bk

�
0

(✓j), j > bk

arbitrary
Chao Gao, Department of Statistics, Yale University

c� April 22, 2018 1

|f̂(0)� f(0)|2

���⌃̂� ⌃
���2
op

.P

⇣ p
n
_ ✏2

⌘

k✓̂ � ✓k2 .P

⇣ p
n
_ ✏2

⌘

max
✓2Rp

min
kuk=1

(
1

n

nX
i=1

I{uT log p✓(Xi)  0}� P✓

�
uT log p✓(X)  0

�)

max
✓2Rp

min
kuk=1

(
1

n

nX
i=1

I{uT log p✓(Xi)  0}
)

log
p
˜✓

p✓
⇡ (✓̃ � ✓)Tr log p✓

Q =
n
N(0,⌃) : ⌃ 2 Rp⇥p

o

Q = Q̃ = {p✓ : ✓ 2 Rp}

Q̃ =
n
N(0, ⌃̃) : ⌃̃ = ⌃+ ruuT , kuk = 1

o

Q =
n
N(✓, Ip) : ✓ 2 Rp

o

Q̃ =
n
N(✓̃, Ip) : ✓̃ 2 Nr(✓)

o

max
✓2R

min
kuk=1

1

n

nX
i=1

I
�
uTXi � uT ✓

 

r ! 0

min
Q2Q

max
T2T

(
1

n

nX
i=1

T (Xi)�
Z

f⇤ (T ) dQ

)

loss function:

Chao Gao, Department of Statistics, Yale University

c� August 12, 2018 1

Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2

_ ✏2

�2

k · k2

k·k2
F

k · k2
op

k · k2`1

M(✏) ⇣ min
�>0

⇢
logN (�,⇥,TV(·, ·))

n
+ �2

�
_ ✏2.

M(✏) & M(0) _ !(✏,⇥)

k⌃̂� ⌃k2
op

 C
⇣ p

n
_ ✏2

⌘

⌃ 2 F↵, Q

E =
1

k
p+

k � 1

k
q

k = n
1

2↵+1 ^ p

k⌃̂� ⌃k2
op

 C


min

⇢
n� 2↵

2↵+1 +
log p

n
,
p

n

�
_ ✏2

�



Robust Density Estimation
Chao Gao, Department of Statistics, Yale University

c� April 9, 2018 1

X
1

, ..., Xn ⇠ (1� ✏)f + ✏g

X
1

, ..., Xn ⇠ (1� ✏)P✓ + ✏G

bk = argmax
k

⇡(k|X)

ek = argmax
k

(⇡(k � 1|X) + ⇡(k|X))

�  ↵

k = 1

k = n
1

2↵+1

sup
✓02⇥↵(B)

Pn
✓0⇧

⇣
k✓ � ✓

0

k2
���X⌘

⇣ n� 2�
2�+1

sup
✓02⇥↵(B)

Pn
✓0
bQ
[k]k✓ � ✓

0

k2 ⇣ n� 2↵
2↵+1

⇧
�
D⇤ (P✓0kP✓)  ✏2n

�
� ⇧ (⌦j⇥j)

=
Y
j

Z
✓j2⇥j

d⇧j(✓j)

� exp
�
�C

1

n✏2n
�

bQ
VB

= bQ
EB

d bQ
EB

(✓) /
Y
jbk

fj(✓j) exp
⇣
�n

2
(✓j � Yj)

2

⌘Y
j>bk

�
0

(✓j)

d[ bQ
EB

(✓)]j/d✓j =

8><>:
/ fj(✓j) exp

⇣
�n

2
(✓j � Yj)

2

⌘
, j  bk

�
0

(✓j), j > bk

arbitrary

Chao Gao, Department of Statistics, Yale University

c� August 12, 2018 1
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