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Huber’s (1997) Call to Arms

“It is one thing to design a theoretical algorithm whose
purpose is to prove [large fractions of corruptions can be
tolerated] and quite another thing to design a practical
version that can be used not merely on small, but also on
medium sized regression problems, with a 2000 by 50 matrix
or so. This last requirement would seem to exclude all of the
recently proposed [techniques].”



Classic Motivations

* Model misspecification
* Nature doesn’t actually sample from Gaussians

* Dirty datasets
* Some measurement/recording errors
» Data from multiple inconsistent sources



Modern Motivations

» Data poisoning and adversarial attacks
* Current machine learning systems are surprisingly brittle

“panda” “gibbon”

57.7% confidence 99.3% confidence

Figure from [Goodfellow Shlens Szegedy ‘14]



Modern Motivations

From [Gu Dolan-Gavitt Garg ‘17]



Modern Motivations
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From [Athalye Engstrom llyas Kwok, ICML ‘18]



Unsupervised Learning

Being Robust (in High Dimensions) Can Be Practical
[Diakonikolas K Kane Moitra Li Stewart, ICML ‘17]



Does the filter “work”?

* 90% Gaussian data, 10% adversarial noise

* |sotropic Gaussian
* Estimate mean
* Estimate covariance

e Skewed Gaussian
e Estimate covariance



Synthetic Experiments, Unknown Mean
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Code: https://github.com/hoonose/robust-filter



Synthetic Experiments, Unknown Covariance
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Code: https://github.com/hoonose/robust-filter



Exploratory Data Analysis

Being Robust (in High Dimensions) Can Be Practical
[Diakonikolas K Kane Moitra Li Stewart, ICML ‘17]



Robust PCA

e Our setting: incomparable with Robust PCA setting of Candes et al.



Gene Expression PCA Contains Europe

* Genes Mirror Geography in Europe. [Novembre et al.], Nature ‘08

Original Data

-0.3¢

-0.2 1

-0.1 ¢

Code: https://github.com/hoonose/robust-filter



Naively, Corruptions Destroy Europe

* Genes Mirror Geography in Europe. [Novembre et al.], Nature ‘08
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Code: https://github.com/hoonose/robust-filter



Europe is RANSACked

* Genes Mirror Geography in Europe. [Novembre et al.], Nature ‘08

RANSAC Projection
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Code: https://github.com/hoonose/robust-filter



Robust PCA SDPs couldn’t save them...

* Genes Mirror Geography in Europe. [Novembre et al.], Nature ‘08
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Code: https://github.com/hoonose/robust-filter
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Our Algorithms Fix Europe!

* Genes Mirror Geography in Europe. [Novembre et al.], Nature ‘08
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Code: https://github.com/hoonose/robust-filter



Supervised Learning

Sever: A Robust Meta-Algorithm for Stochastic Optimization
[Diakonikolas K Kane Li Steinhardt Stewart ‘18]



Beyond Robust Statistics

* Can we optimize more complicated objectives with corruptions?
* Distribution D over (X, y) pairs
* Loss function (X, y,w)

* Given an &-corrupted set of samples from D, find w that minimizes
fw) = Exy)~p [£(X,y,w)].

* Examples:
e Linear regression: (X, y,w) = (y — (w, x))?
* SVMs: 2(X,y,w) = max(0,1 — y(w, x))
* GLMs



Stochastic Optimization

* Gradient descent:
1
Wii1 < W — 1t Ez VEe(X;, yi,we)

* Want to follow —Vf(w;)

* The empirical gradient works in the vanilla setting:
* Vf (we) = E[VE(X, y,w)] =~ % VE(X;, yi, we)

* But what if some (X}, y;) are corrupted?

* How do we robustly estimate E[VZ(X,y,w)]?



Sever: Robust Stochastic Optimization

* How do we robustly estimate E[VZ(X,y,w)]?

* Modified gradient descent:
Wir1 < We — Nt Gt
* g; is a robust estimate of Vf (w;)

e Obtained via robust estimators from earlier
* Bounded moments of X often suffice to bound moments of V£(X,y, w)

Same idea used in [Prasad Suggala Balakrishnan Ravikumar ‘18]



Sever

* If Cov[V2(X,y,w)] < 021, then Sever locates an 0(g+/¢)-
approximate critical point
* Based on a “second-moment” filter

 If (X, y,w) is convex, can approximate optimal parameters:

f (W) — argmin,, f(w) < 0(gve)

 Specific sample complexity results for linear regression, SVM, logistic
regression



Making it practical

* Problem: Gradient descent is fast, filter is (comparatively) slow
* Solution: Run filter once GD has converged to “sever” outliers
» Same(ish) theoretical guarantees, much faster in practice

* Even simpler: removing some hyperparameters

* Project onto top singular vector of gradients, remove %n most extreme
points, repeat k times



Attacks

* How do we know a defense works?
* Generate effective attacks

» Data poisoning attacks of [Steinhardt Koh Liang, NIPS’17]

* If the attacker knew the defender’s strategy, what should he do?
e Generally a hard problem...

* If defender’s strategy is “fixed” (not data dependent), can generate
nearly optimal attacks using no-regret learning

* With “simple” data-dependent defenses, effective heuristic methods
* Forthcoming work bypasses more defenses [Koh Steinhardt Liang, ?7?]



Experiments

* Ridge regression and Support Vector Machines (SVMs)

* Synthetic and real datasets
* Drug discovery (regression) and Enron spam (classification)

* Generated large suite of attacks for a range of € (from 0.5% to 10%)

* Comparison: other baselines which attempt to remove “large” points
* Large norm, loss, norm of gradient, or distance of gradient from mean



Ridge Regression

Regression: Drug discovery data,

Regression: Synthetic data Regression: Drug discovery data attack targeted against SEVER
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SVMs, synthetic data

Test Error

SVM: Strongest attacks against loss on synthetic data

SVM: Strongest attacks against SEVER on synthetic data
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SVMs, Enron dataset

Test Error

SVM: Strongest attacks against
gradientCentered on Enron

SVM: Strongest attacks
against loss on Enron
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Conclusions

* Robustness is real and better than ever!
e Useful for data analysis in unsupervised and supervised settings
* Next steps: practical tools for more real-world settings



