List Decoding via Filters

Ilias Diakonikolas1 \hspace{1cm} Daniel M. Kane2 \hspace{1cm} Alistair Stewart3

1Department of Computer Science
University of Southern California
diakonik@usc.edu

2Departments of CS/Math
University of California, San Diego
dakane
dakane@ucsd.edu

3Department of Computer Science
University of Southern California
stewart.al@gmail.com

August 14th, 2018
Outline

- Problem Setup
- Information Theoretic Bounds
- Basic Multifilters
- Higher Degree Tests
- SQ Lower Bounds
- Learning Mixtures
Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 - \epsilon)G + \epsilon E$ for small ϵ
Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 - \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X
Robust Mean Estimation

- Gaussian $G = \mathcal{N}(\mu, I) \subset \mathbb{R}^n$
- $X = (1 - \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X
- Learn Approximation to μ
Very Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
Very Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 - \alpha)E$ for small α
Very Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 - \alpha)E$ for small α
- Given m independent samples x_i of X
Very Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 - \alpha)E$ for small α
- Given m independent samples x_i of X
- Learn Approximation to μ
Problem

What if \(X = \sum_i \alpha_i G_i \)? Which is the “real” \(G \)?
Problem

What if $X = \sum_i \alpha_i G_i$? Which is the “real” G?

List decoding: return several hypotheses h_i with guarantee that at least one is close.
Before we begin, we should determine what errors are information-theoretically possible.
Lower Bounds

- Suppose $X = N(0, I)$.
Lower Bounds

- Suppose $X = N(0, I)$.
- Any $\alpha N(\mu, I)$ with $|\mu| \leq \sqrt{\log(1/\alpha)/C}$ nearly hides under X (up to $\alpha^{\Omega(C)}$ error).
Lower Bounds

- Suppose $X = N(0, I)$.
- Any $\alpha N(\mu, I)$ with $|\mu| \leq \sqrt{\log(1/\alpha)/C}$ nearly hides under X (up to $\alpha^{\Omega(C)}$ error).
- Adding a bit to X, can hide $\alpha^{-\Omega(C)}$ such Gaussians.
Proposition

There is no algorithm that returns \(\text{poly}(1/\alpha) \) many hypotheses so that with at least \(2/3 \) probability, at least one is within \(o(\sqrt{\log(1/\alpha)}) \) of the true mean.

- Let \(X \) be the slightly modified Gaussian.
- There are \(\alpha^{-\Omega(C)} \) possibilities, no two within \(\sqrt{\log(1/\alpha)}/C \).
- Algorithm cannot tell which possibility is correct, and must return a hypothesis for each.
Proposition

There is an (inefficient) algorithm that returns $O(1/\alpha)$ hypotheses so that with at least $2/3$ probability, at least one of the hypotheses is within $O(\sqrt{\log(1/\alpha)})$ of the true mean.
Let H be the set of points x for which there is a set S_x of samples so that:

- S_x is large: it contains at least an $\alpha/2$-fraction of the samples.
- S_x is concentrated about x: in any direction, at most a $\alpha/10$-fraction of the points S_x are further than $2\sqrt{\log(1/\alpha)}$ from x in that direction.

Note that with high probability $\mu \in H$ with S_μ the good samples.

Problem: Too many hypotheses.
Hypotheses

Let H be the set of points x for which there is a set S_x of samples so that:

- S_x is large: it contains at least an $\alpha/2$-fraction of the samples.
- S_x is concentrated about x: in any direction, at most a $\alpha/10$-fraction of the points S_x are further than $2\sqrt{\log(1/\alpha)}$ from x in that direction.

Note that with high probability $\mu \in H$ with S_μ = the good samples.
Hypotheses

Let H be the set of points x for which there is a set S_x of samples so that:

- S_x is large: it contains at least an $\alpha/2$-fraction of the samples.
- S_x is concentrated about x: in any direction, at most a $\alpha/10$-fraction of the points S_x are further than $2\sqrt{\log(1/\alpha)}$ from x in that direction.

Note that with high probability $\mu \in H$ with $S_\mu = \text{the good samples}$.

Problem: Too many hypotheses.
Idea

Cover H with a small number of balls.

Lemma

There is no set of $\frac{5}{\alpha}$ elements of H that are pairwise separated by at least $4\sqrt{\log(1/\alpha)}$.
Idea

Cover H with a small number of balls.

Lemma

There is no set of $\frac{5}{\alpha}$ elements of H that are pairwise separated by at least $4\sqrt{\log(1/\alpha)}$.

Take a maximal set of $4\sqrt{\log(1/\alpha)}$-separated hypotheses.

- Size at most $\frac{5}{\alpha}$.
- Every element of H (including μ) within $4\sqrt{\log(1/\alpha)}$ of one.
Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x’s, then too many points.

Lemma

If $x, y \in H$ with $|x - y| \geq 4 \sqrt{\log(1/\epsilon)}$, then $|S_x \cap S_y| \leq \alpha/10(|S_x| + |S_y|)$.

Proof.

Project onto the line between x and y.

At most $\alpha |S_x|/10$ items from S_x closer to y than x.

At most $\alpha |S_y|/10$ items from S_y closer to x than y.
Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x’s, then too many points.

Lemma

If $x, y \in H$ with $|x - y| \geq 4\sqrt{\log(1/\epsilon)}$, then $|S_x \cap S_y| \leq \alpha/10(|S_x| + |S_y|)$.
Overlaps

Idea: If x and y far away, then S_x and S_y have little overlap. If many separated x’s, then too many points.

Lemma

If $x, y \in H$ with $|x - y| \geq 4\sqrt{\log(1/\epsilon)}$, then $|S_x \cap S_y| \leq \alpha/10(|S_x| + |S_y|)$.

Proof.

- Project onto the line between x and y.
- At most $\alpha|S_x|/10$ items from S_x closer to y than x.
- At most $\alpha|S_y|/10$ items from S_y closer to x than y.
Counting

If $x_1, x_2, \ldots, x_m \in H$ pairwise far, then

$$|S_{x_1} \cup S_{x_2} \cup \ldots \cup S_{x_m}| \geq \sum_{i=1}^{m} |S_{x_i}| - \sum_{1 \leq i < j \leq m} \frac{\alpha}{10}(|S_{x_i}| + |S_{x_j}|)$$

$$= \sum_{i=1}^{m} |S_{x_i}|(1 - \frac{m\alpha}{10})$$

$$\geq \frac{m\alpha}{2|S|(1 - \frac{m\alpha}{10})}.$$
Counting

If $x_1, x_2, \ldots, x_m \in H$ pairwise far, then

$$|S_{x_1} \cup S_{x_2} \cup \ldots \cup S_{x_m}| \geq \sum_{i=1}^{m} |S_{x_i}| - \sum_{1 \leq i < j \leq m} \alpha/10(|S_{x_i}| + |S_{x_j}|)$$

$$= \sum_{i=1}^{m} |S_{x_i}|(1 - m\alpha/10)$$

$$\geq m\alpha/2|S|(1 - m\alpha/10).$$

If $m = 5/\alpha$, this is more than the total number of samples.
If the good samples have all but $\alpha/10$-fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error $O(t)$.

Given a set H of hypotheses at least one within r of true mean, can in poly-time reduce to a set of $O(1/\alpha)$ with error $O(r + \sqrt{\log(1/\alpha)})$.

- Use LP to determine if there is a set S_x with concentration about x in the directions $x - y$.
- Cover remaining x's with balls.
If the good samples have all but $\alpha/10$-fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error $O(t)$.

Given a set H of hypotheses at least one within r of true mean, can in poly-time reduce to a set of $O(1/\alpha)$ with error $O(r + \sqrt{\log(1/\alpha)})$.

▶ Use LP to determine if there is a set S_x with concentration about x in the directions $x - y$.

▶ Cover remaining x’s with balls.
If the good samples have all but $\alpha/10$-fraction within t of the mean in any direction, can get $O(1/\alpha)$ hypotheses with error $O(t)$.

Given a set H of hypotheses at least one within r of true mean, can in poly-time reduce to a set of $O(1/\alpha)$ with error $O(r + \sqrt{\log(1/\alpha)})$.

- Use LP to determine if there is a set S_x with concentration about x in the directions $x - y$.
- Cover remaining x's with balls.
Algorithms

- Filters and Multifilters
- Obstacle at $\alpha^{-1/2}$.
- Higher Degree Idea
- Variance Control
With few errors algorithm looks like:

1. Compute Covariance
2. If large eigenvalue produce filter and repeat
3. Return sample mean
Moderately Robust Algorithm

With few errors algorithm looks like:

1. Compute Covariance
2. If large eigenvalue produce filter and repeat
3. Return sample mean

Would like to do the same thing in the high noise case. It *almost* works.
If $\alpha < 1/2$, might not be able to tell where the real samples are.
Multifilters

If $\alpha < 1/2$, might not be able to tell where the real samples are.

Split into several overlapping sets of samples S_i
Multifilters

If $\alpha < 1/2$, might not be able to tell where the real samples are.

Split into several overlapping sets of samples S_i so that:

- At least one S_i has higher fraction of good samples than S
- $\sum |S_i|^2 \leq |S|^2$
Split into cases

- **Case 1:** Almost all of the samples are in the same small interval.
- **Case 2:** There are clusters of samples far apart from each other.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.

- With high probability, true mean in I.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.

- With high probability, true mean in I.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of I.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.

- With high probability, true mean in I.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of I.
- Unless variance is $O(|I|^2 + \log(1/\alpha))$, so that at most an α^2-fraction of removed samples were good.
Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.
Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.

- Find some x, let $S_1 = \{\text{samples} \leq x + 10\sqrt{\log(1/\alpha)}\}$, $S_2 = \{\text{samples} \geq x - 10\sqrt{\log(1/\alpha)}\}$.

All but an α^2-fraction of removed samples (on the correct side) are bad:

- If $\mu \geq x$, all but α^3-fraction of good samples in S_2.
- If $\mu \leq x$, all but α^3-fraction in S_1.
- Always throw away at least $\alpha/6$ samples.

Need: $|S_1|^2 + |S_2|^2 \leq |S|^2$.

Multifilter Case

Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.

- Find some x, let $S_1 = \{\text{samples } \leq x + 10\sqrt{\log(1/\alpha)}\}$, $S_2 = \{\text{samples } \geq x - 10\sqrt{\log(1/\alpha)}\}$.
- All but an α^2-fraction of removed samples (on the correct side) are bad:
 - If $\mu \geq x$, all but α^3-fraction of good samples in S_2.
 - If $\mu \leq x$, all but α^3-fraction in S_1.
 - Always throw away at least $\alpha/6$ samples.
Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.

- Find some x, let $S_1 = \{\text{samples} \leq x + 10\sqrt{\log(1/\alpha)}\}$, $S_2 = \{\text{samples} \geq x - 10\sqrt{\log(1/\alpha)}\}$.
- All but an α^2-fraction of removed samples (on the correct side) are bad:
 - If $\mu \geq x$, all but α^3-fraction of good samples in S_2.
 - If $\mu \leq x$, all but α^3-fraction in S_1.
 - Always throw away at least $\alpha/6$ samples.

- **Need:** $|S_1|^2 + |S_2|^2 \leq |S|^2$.
Let \(f(x) \) be the fraction of samples less than \(x \).
Analysis

- Let $f(x)$ be the fraction of samples less than x.
- Need $x \in I$ so that $(1 - f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1$.
Analysis

- Let \(f(x) \) be the fraction of samples less than \(x \).
- Need \(x \in I \) so that \((1 - f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1\).
- Happens unless \(f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2} \).
Let $f(x)$ be the fraction of samples less than x.

Need $x \in I$ so that $(1 - f(x))^2 + f(x + 20 \sqrt{\log(1/\alpha)})^2 \leq 1$.

Happens unless $f(x + 20 \sqrt{\log(1/\alpha)}) \gg f(x)^{1/2}$.

Good unless $f(x + 20t \sqrt{\log(1/\alpha)}) \gg \alpha^{1/2^t}$, only works for $t \ll \log \log(1/\alpha)$.

Let $f(x)$ be the fraction of samples less than x.

Need $x \in I$ so that $(1 - f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1$.

Happens unless $f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2}$.

Good unless $f(x + 20t\sqrt{\log(1/\alpha)}) \gg \alpha^{1/2t}$, only works for $t \ll \log \log(1/\alpha)$.

Can find such sets unless $|I| = O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$.
General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples, and the variance is $\Omega(|I|^2)$.
General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples, and the variance is $\Omega(|I|^2)$.

Proposition

If the variance in some direction is more than a sufficient multiple of $\log(1/\alpha)$ (with a slight refinement of the argument) then we can find at most two sets of samples S_i so that

1. For some i, at most an α^2-fraction of $S \setminus S_i$ is good samples.
2. $\sum_i |S_i|^2 \leq |S|^2$.
Basic Multifilter Algorithm

1. Maintain several sets S_i of samples
2. For each i, compute empirical covariance matrix $\hat{\Sigma}_i$
3. If some $\hat{\Sigma}_i$ has a large eigenvalue
 - Create multifilter
 - Apply to S_i
 - Replace S_i by resulting sets in list
 - Go to step 2.
4. Return list of all μ_{S_i}
Analysis

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$
Analysis

At each step:
- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$

When return if:
- S_i has α-fraction of good samples AND
- $\hat{\Sigma}_i$ has no large eigenvalues

$$\log(1/\alpha) \gg \text{Var}(v \cdot S_i) \geq \alpha \left[v \cdot (\mu_{S_i} - \mu) \right]^2,$$

so $|\mu_{S_i} - \mu| = O\left(\alpha^{-1/2} \sqrt{\log(1/\alpha)}\right)$.
Analysis

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$

When return if:

- S_i has α-fraction of good samples AND
- $\hat{\Sigma}_i$ has no large eigenvalues

Then for all $|v| = 1$,

$$\log(1/\alpha) \gg \text{Var}(v \cdot S_i) \geq \alpha [v \cdot (\mu_{S_i} - \mu)]^2,$$

so

$$|\mu_{S_i} - \mu| = O(\alpha^{-1/2} \sqrt{\log(1/\alpha)}).$$
Obstacle at $\alpha^{-1/2}$

Unfortunately, the error can be as much as $\alpha^{-1/2}$.
Idea

Bounds on the second moments are not enough to ensure concentration.
Bounds on the second moments are not enough to ensure concentration. **Fix:** use higher moments.
Analysis

If for all unit vectors ν,

$$\mathbb{E}[|\nu \cdot (X - \mu_X)|^{2d}] = O(1),$$

then

$$1 \gg \alpha |\nu \cdot (\mu - \mu_X)|^{2d},$$

so

$$|\mu - \mu_X| = O(\alpha^{-1/2d}).$$
Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when $d > 1$.
Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when $d > 1$.

Idea: Look at a relaxation of this problem.

- Last talk: Look for SoS proof that $\mathbb{E}[(v \cdot X)^{2d}] \ll |v|^{2d}$ for all v.
Computational Difficulty

It is computationally intractable to determine whether or not there is a unit vector v for which $\mathbb{E}[(v \cdot X)^{2d}]$ is large when $d > 1$.

Idea: Look at a relaxation of this problem.

- Last talk: Look for SoS proof that $\mathbb{E}[(v \cdot X)^{2d}] \ll |v|^{2d}$ for all v.
- This talk: See if there is any degree-d polynomial p with $\mathbb{E}[p(X)^2]$ too big.
Basic Idea

Determine whether or not there is a degree-d polynomial p with $\mathbb{E}[p(S)^2]$ substantially larger than $\mathbb{E}[p(G_{\mu S})^2]$.
Basic Idea

Determine whether or not there is a degree-d polynomial p with $\mathbb{E}[p(S)^2]$ substantially larger than $\mathbb{E}[p(G_{\mu_S})^2]$.

- Eigenvalue computation.
- If not, implies $|\mu - \mu_S| = \tilde{O}(\alpha^{-1/2d})$.
- If yes, create a (multi-)filter.
A Failed Attempt

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.
A Failed Attempt

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.

- Compute values of $p(x)$ for $x \in S$.
- Fairly spread out.
- Values of $p(G)$ are clustered.
- Use same multifilter ideas as before.
A Failed Attempt

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.

- Compute values of $p(x)$ for $x \in S$.
- Fairly spread out.
- Values of $p(G)$ are clustered.
- Use same multifilter ideas as before.

Problem: $\text{Var}(p(G))$ might also be large!
A Failed Attempt

If $\text{Var}(p(X))$ is too large, create a (multi-)filter based on the values of p.

- Compute values of $p(x)$ for $x \in S$.
- Fairly spread out.
- Values of $p(G)$ are clustered.
- Use same multifilter ideas as before.

Problem: $\text{Var}(p(G))$ might also be large!

- Unlike degree-1 polynomials, for degree-d, $\text{Var}(p(G))$ depends on μ.
- Want a way to verify that $\text{Var}(p(G))$ is small.
The Strategy

Given a p with $\mathbb{E}[p(S)^2] \gg \mathbb{E}[p(G_{\mu S})^2]$ try to either:

- Verify that $\mathbb{E}[p(G)^2] \approx \mathbb{E}[p(G_{\mu S})^2]$
 - Can then filter out points with $p(x)^2$ too large.
The Strategy

Given a p with $\mathbb{E}[p(S)^2] \gg \mathbb{E}[p(G_{\mu_S})^2]$ try to either:

- Verify that $\mathbb{E}[p(G)^2] \approx \mathbb{E}[p(G_{\mu_S})^2]$
 - Can then filter out points with $p(x)^2$ too large.
- OR produce a (multi-)filter in failing to verify this.
Bounding $\mathbb{E}[p(G)^2]$

- For any degree-d polynomial p, $\mathbb{E}[p(G)^2] = q(\mu)$ for some degree-$2d$ polynomial q.

Point: If $\mathbb{E}[p(G)^2]$ is too big, then $r(x_1, x_2, ... , x_{2d})$ (where $x_i \in S$), has an α^2 chance of being large.
For any degree-d polynomial p, $\mathbb{E}[p(G)^2] = q(\mu)$ for some degree-$2d$ polynomial q.

This in turn equals $\mathbb{E}[r(G_1, G_2, \ldots, G_{2d})]$ for some multilinear r with $|r| \approx |p|$ and G_i i.i.d. copies of G.
Bounding $\mathbb{E}[p(G)^2]$

- For any degree-d polynomial p, $\mathbb{E}[p(G)^2] = q(\mu)$ for some degree-$2d$ polynomial q.
- This in turn equals $\mathbb{E}[r(G_1, G_2, \ldots, G_{2d})]$ for some multilinear r with $|r| \approx |p|$ and G_i i.i.d. copies of G.

Point: If $\mathbb{E}[p(G)^2]$ is too big, then $r(x_1, x_2, \ldots, x_{2d})$ ($x_i \in S$), has an α^{2d} chance of being large.
Large Values

Suppose that $r(x_1, x_2, \ldots, x_{2d})$ is much larger than expected.
Large Values

Suppose that \(r(x_1, x_2, \ldots, x_{2d}) \) is much larger than expected.

- Assign \(x_i \)'s one at a time.
- At some stage the size of the polynomial must jump.
- In particular,

\[
\mathbb{E}[|r(x_1, x_2, \ldots, x_{i+1}, G'_{i+2}, \ldots, G'_{2d})|^2] \\
\gg \mathbb{E}[|r(x_1, x_2, \ldots, x_i, G'_{i+1}, \ldots, G'_{2d})|^2]
\]

where \(G'_j \) are i.i.d. copies of \(G_{\mu_S} \).
Quadratic

Note that

\[s(y) = \mathbb{E}[|r(x_1, x_2, \ldots, x_i, y, G'_{i+2}, \ldots, G'_{2d})|^2] \]

is a quadratic polynomial in \(y \) with \(s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})] \).
Quadratic

Note that

\[s(y) = \mathbb{E}[|r(x_1, x_2, \ldots, x_i, y, G'_{i+2}, \ldots, G'_{2d})|^2] \]

is a quadratic polynomial in \(y \) with \(s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu S})] \).

Can diagonalize \(s \) as

\[s(y) = \sum L_j(y)^2 \]

for linear polynomials \(L_j \).
Quadratic

- Note that

 \[s(y) = \mathbb{E}[|r(x_1, x_2, \ldots, x_i, y, G'_{i+2}, \ldots, G'_{2d})|^2] \]

 is a quadratic polynomial in \(y \) with \(s(x_{i+1}) \gg \mathbb{E}[s(G_{\mu_S})] \).

- Can diagonalize \(s \) as

 \[s(y) = \sum L_j(y)^2 \]

 for linear polynomials \(L_j \).

- So there must be some \(j \) for which \(L_j(x_{i+1}) \) is much larger than expected. This will let us create a (multi-)filter.
Algorithm

1. Try to find polynomial p with $\mathbb{E}[p(S)^2] \gg \log^{4d}(1/\alpha)\mathbb{E}[p(G_{\mu_S})^2]$.
 - If none exist, return μ_S.
2. Compute corresponding multilinear r. See if $|r(x_1, \ldots, x_{2d})|^2 \gg \log^{2d}(1/\alpha)\mathbb{E}[p(G_{\mu_S})^2]$ with probability at least α^{2d}.
 - If not, $\mathbb{E}[p(G)^2]$ is small, filter out x with $p(x)^2$ more than average, and return to step 1.
3. Find x_1, x_2, \ldots, x_i so that with α probability over $y \in S$, $|r(x_1, \ldots, x_i, y)|^2 \gg \log(1/\alpha)|r(x_1, \ldots, x_i)|^2$.
4. Compute the corresponding quadratic $s(y) = \sum L_j(y)^2$.
5. Find an j so that $L_j(y)$ is likely larger than expected. Use to create a (multi-)filter. Apply and return to step 1.
Requirements

Samples:
- S needs to be a good set for polynomials of degree $2d$.
- $|S| = \text{poly}(n^d/\alpha)$.
Requirements

Samples:
- S needs to be a good set for polynomials of degree $2d$.
- $|S| = \text{poly}(n^d/\alpha)$.

Runtime:
- Need to check for events with probability α^{2d}.
- Runtime is $\text{poly}(|S|/\alpha^d)$.
Final Results

Theorem

There exists an algorithm that given $O(d^{2d})n^{O(d)}/\text{poly}(\alpha)$ i.i.d. samples from X, there is an $(nd/\alpha)^{O(d)}$ time algorithm which with high probability returns a list of $O(1/\alpha)$ hypotheses so that at least one hypothesis is within $\tilde{O}_d(\alpha^{-1/2d})$ of μ.

Note: in quasi-polynomial time/samples can achieve polylog error. We think we can improve to $O(\sqrt{\log(1/\alpha)})$.

DKS (UCSD/USC) List Decoding Filters August, 2018 37 / 45
Final Results

Theorem

There exists an algorithm that given $O(d^{2d})n^{O(d)}/\text{poly}(\alpha)$ i.i.d. samples from X, there is an $(nd/\alpha)^{O(d)}$ time algorithm which with high probability returns a list of $O(1/\alpha)$ hypotheses so that at least one hypothesis is within $\tilde{O}_d(\alpha^{-1/2d})$ of μ.

Note: in quasi-polynomial time/samples can achieve polylog error. We think we can improve to $O(\sqrt{\log(1/\alpha)})$.
In fact, this list decoding result is qualitatively tight for SQ algorithms (though note that our algorithm is not quite SQ).

Theorem

Any SQ list decoding algorithm that with 2/3 probability returns a list of hypotheses at least one of which is closer than $\alpha^{-1/d}$ from the mean must do one of the following:

- Return exponentially many hypotheses.
- Perform exponentially many queries.
- Perform queries with accuracy $n^{-\Omega(d)}$.
Proof

Using our lower bounds framework, we want a one-dimensional distribution that matches d moments. We have one of the form

$$A(x) = (1 - \alpha)N(0, 1) + \alpha N(\alpha^{-1/d} / C_d, 1) + E$$

where the $E(x)$ is what it needs to be to make the moments work.
Proof

Using our lower bounds framework, we want a one-dimensional distribution that matches d moments. We have one of the form

$$A(x) = (1 - \alpha)N(0, 1) + \alpha N(\alpha^{-1/d} / C_d, 1) + E$$

where the $E(x)$ is what it needs to be to make the moments work. Since the $\alpha N(\alpha^{-1/d} / C_d, 1)$ term only affects the first d moments by at most $1/C_d$, we can find an appropriate fudge term.
Proof

Using our lower bounds framework, we want a one-dimensional distribution that matches d moments. We have one of the form

$$A(x) = (1 - \alpha)N(0, 1) + \alpha N(\alpha^{-1/d}/C_d, 1) + E$$

where the $E(x)$ is what it needs to be to make the moments work. Since the $\alpha N(\alpha^{-1/d}/C_d, 1)$ term only affects the first d moments by at most $1/C_d$, we can find an appropriate fudge term.

We now have exponentially many distributions P_v that cannot be distinguished by an SQ algorithm unless it uses exponentially many queries or queries of accuracy $n^{-\Omega(d)}$, each would could have $\mu = v\alpha^{-1/d}/C_d$. Finding a better approximation to μ requires determining which P_v we have.
Learning Mixtures of Spherical Gaussians

Application: Let $X = 1/k \sum_{i=1}^{k} G_i$ with each $G_i \sim N(\mu_i, I)$.
Learning Mixtures of Spherical Gaussians

Application: Let $X = 1/k \sum_{i=1}^{k} G_i$ with each $G_i \sim N(\mu_i, I)$. Want to learn the μ_i.
[Regev-Vijayraghavan ’17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
[Regev-Vijayraghavan ’17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.

[Regev-Vijayraghavan ’17] show how to improve a rough approximation to μ_i to a precise one.
History

- [Regev-Vijayraghavan '17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [Regev-Vijayraghavan '17] show how to improve a rough approximation to μ_i to a precise one.
- [Vempala-Wang '02] Give algorithm with separation $\Omega(k^{1/4})$.
History

- [Regev-Vijayraghavan '17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [Regev-Vijayraghavan '17] show how to improve a rough approximation to μ_i to a precise one.
- [Vempala-Wang '02] Give algorithm with separation $\Omega(k^{1/4})$.

Question: How much separation is actually needed?
List Decoding

Run list decoding algorithm. Since X is a noisy version of each G_i, our list contains approximations to all means with error D.
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.

Cluster used hypotheses.

Recover original Gaussians to estimate means.
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean. Cluster used hypotheses.
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.
Cluster used hypotheses.
Recover original Gaussians to estimate means.
Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $\text{poly}(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the μ_i. Can be improved to polylogarithmic separation in quasi-polynomial time/samples. We think we can improve this to $O(\sqrt{\log(k)})$ separation. Can be generalized to unequal mixtures or to Gaussians with different radii (though still spherical).
Results

Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $\text{poly}(n,(dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the μ_i.

Can be improved to polylogarithmic separation in quasi-polynomial time/samples. We think we can improve this to $O(\sqrt{\log(k)})$ separation.
Theorem

If the means have separation $\Omega(k^{1/2d})$, there is an algorithm that takes $\text{poly}(n, (dk)^d)$ samples, runs in sample polynomial time and returns accurate approximations to the μ_i.

Can be improved to polylogarithmic separation in quasi-polynomial time/samples. We think we can improve this to $O(\sqrt{\log(k)})$ separation. Can be generalized to unequal mixtures or to Gaussians with different radii (though still spherical).
Conclusion

Have a robust list decoding algorithm with much better error. Can use to learn mixtures of spherical Gaussians with k^δ separation.
Conclusion

Have a robust list decoding algorithm with much better error. Can use to learn mixtures of spherical Gaussians with k^δ separation.

Open problems:

1. How much can the Gaussian assumption be relaxed?
2. Can you do better for learning mixtures than for list decoding?
3. Are there better algorithms for density estimation?

