Statistical Query Lower Bounds for Robust Statistics Problems

Ilias Diakonikolas ¹ Daniel M. Kane ² Alistair Stewart ³

¹Department of Computer Science University of Southern California diakonik@usc.edu

²Departments of CS/Math University of California, San Diego dakane dakane@ucsd.edu

³Department of Computer Science University of Southern California stewart.al@gmail.com

August 14th, 2018

Outline

- The SQ Model
- Basic SQ Lower Bounds
- The Moment Matching Method
- Applications

A (1) > A (2) > A

Mean Estimation Error

Robustly estimate the mean of an ϵ -corrupted Gaussian:

- Can achieve error $O(\epsilon \sqrt{\log(1/\epsilon)})$ in polynomial time.
- Can achieve error $O(\epsilon)$ information theoretically.

Robustly estimate the mean of an ϵ -corrupted Gaussian:

- Can achieve error $O(\epsilon \sqrt{\log(1/\epsilon)})$ in polynomial time.
- Can achieve error $O(\epsilon)$ information theoretically.

Question: What is the best error that can be achieve efficiently?

The $\epsilon \sqrt{\log(1/\epsilon)}$ seems right, but how do we prove it?

(日)

The $\epsilon \sqrt{\log(1/\epsilon)}$ seems right, but how do we prove it?

Can't do so unconditionally, since TukeyMedian $\in PH$. Even hardness reductions seem difficult since they would need to be very average case.

The $\epsilon \sqrt{\log(1/\epsilon)}$ seems right, but how do we prove it?

Can't do so unconditionally, since TukeyMedian $\in PH$. Even hardness reductions seem difficult since they would need to be very average case.

So we work in a restricted computational model.

What sorts of things do our algorithms do?

- Approximate moments of distributions.
- Approximate moments after applying filters or weights.

What sorts of things do our algorithms do?

- Approximate moments of distributions.
- Approximate moments after applying filters or weights.
- Generally, approximate expectations of functions of distributions.

Given i.i.d. samples X_1, X_2, \ldots, X_N can use to approximate expectations of (normalized) functions to error $O(1/\sqrt{N})$.

Given i.i.d. samples X_1, X_2, \ldots, X_N can use to approximate expectations of (normalized) functions to error $O(1/\sqrt{N})$.

Query: A Stat(τ) query takes a function $f : \mathbb{R}^n \to [-1, 1]$ and returns a v so that $|\mathbb{E}[f(X)] - v| \leq \tau$.

Given i.i.d. samples X_1, X_2, \ldots, X_N can use to approximate expectations of (normalized) functions to error $O(1/\sqrt{N})$.

Query: A Stat(τ) query takes a function $f : \mathbb{R}^n \to [-1, 1]$ and returns a v so that $|\mathbb{E}[f(X)] - v| \leq \tau$.

Model: An SQ algorithm can adaptively make statistical queries at accuracy τ .

< □ > < 同 > < 回 > < 回 > < 回 >

Given i.i.d. samples X_1, X_2, \ldots, X_N can use to approximate expectations of (normalized) functions to error $O(1/\sqrt{N})$.

Query: A Stat(τ) query takes a function $f : \mathbb{R}^n \to [-1, 1]$ and returns a v so that $|\mathbb{E}[f(X)] - v| \leq \tau$.

Model: An SQ algorithm can adaptively make statistical queries at accuracy τ . Morally, this corresponds to an algorithm with Number of Samples $O(\tau^{-2})$ and Runtime equal to number of queries.

イロト イポト イヨト イヨト

• **Restricted Model:** Hope to prove unconditional lower bounds information-theoretically.

- 4 ∃ ▶

Power of SQ

- **Restricted Model:** Hope to prove unconditional lower bounds information-theoretically.
- **Powerful Model:** Wide range of algorithmic techniques can be formalized in SQ:
 - Filter & Convex Program techniques for robust statistics.
 - PAC learning for AC^0 , decision trees, linear separators, boosting.
 - Unsupervised Learning: stochastic convex optimization, moment-based methods, k-means clustering, EM,

... [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM17]

Power of SQ

- **Restricted Model:** Hope to prove unconditional lower bounds information-theoretically.
- **Powerful Model:** Wide range of algorithmic techniques can be formalized in SQ:
 - Filter & Convex Program techniques for robust statistics.
 - PAC learning for AC^0 , decision trees, linear separators, boosting.
 - Unsupervised Learning: stochastic convex optimization, moment-based methods, k-means clustering, EM,
 - ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM17]

• **Only Major Exception:** Gaussian elimination over finite fields (for example, for learning parity).

• • = • • = •

Example: Learning parities: X is the uniform distribution over a random dimension n-1 subspace of \mathbb{F}_2^n .

(日)

Example: Learning parities: X is the uniform distribution over a random dimension n-1 subspace of \mathbb{F}_2^n .

Test function f

$$\mathbb{E}[f(X)] = (\hat{f}(1) + \hat{f}(\chi))$$

where X is uniform over the halfspace defined by the character χ .

Example: Learning parities: X is the uniform distribution over a random dimension n-1 subspace of \mathbb{F}_2^n .

Test function f

$$\mathbb{E}[f(X)] = (\hat{f}(1) + \hat{f}(\chi))$$

where X is uniform over the halfspace defined by the character χ .

Oracle could return $\hat{f}(1)$ unless $|\hat{f}(\chi)| \ge \tau$.

Example: Learning parities: X is the uniform distribution over a random dimension n-1 subspace of \mathbb{F}_2^n .

Test function f

$$\mathbb{E}[f(X)] = (\hat{f}(1) + \hat{f}(\chi))$$

where X is uniform over the halfspace defined by the character χ .

Oracle could return $\hat{f}(1)$ unless $|\hat{f}(\chi)| \ge \tau$. Plancherel Inequality says

$$\sum_{\chi} |\widehat{f}(\chi)|^2 = \mathbb{E}_{y \in {}_{\boldsymbol{u}} \mathbb{F}_2^n}[|f(y)|^2] \leq 1.$$

Example: Learning parities: X is the uniform distribution over a random dimension n-1 subspace of \mathbb{F}_2^n .

Test function f

$$\mathbb{E}[f(X)] = (\hat{f}(1) + \hat{f}(\chi))$$

where X is uniform over the halfspace defined by the character χ .

Oracle could return $\hat{f}(1)$ unless $|\hat{f}(\chi)| \ge \tau$. Plancherel Inequality says

$$\sum_{\chi} |\hat{f}(\chi)|^2 = \mathbb{E}_{y \in {}_{\boldsymbol{u}} \mathbb{F}_2^n}[|f(y)|^2] \leq 1.$$

Unless τ is exponentially small, $|\hat{f}(\chi)| > \tau$ with exponentially small probability over choice of X.

Example: Learning parities: X is the uniform distribution over a random dimension n-1 subspace of \mathbb{F}_2^n .

Test function f

$$\mathbb{E}[f(X)] = (\hat{f}(1) + \hat{f}(\chi))$$

where X is uniform over the halfspace defined by the character χ .

Oracle could return $\hat{f}(1)$ unless $|\hat{f}(\chi)| \ge \tau$. Plancherel Inequality says

$$\sum_{\chi} |\hat{f}(\chi)|^2 = \mathbb{E}_{y \in_u \mathbb{F}_2^n}[|f(y)|^2] \leq 1.$$

Unless τ is exponentially small, $|\hat{f}(\chi)| > \tau$ with exponentially small probability over choice of X.

Upshot: Either τ exponentially small, or exponentially many queries required.

DKS (UCSD/USC)

Need:

- Many possible distributions X_i, pretending to be like some distribution D (the uniform distribution in the previous example).
- The differences between X_i and D are nearly orthogonal.

Need:

- Many possible distributions X_i, pretending to be like some distribution D (the uniform distribution in the previous example).
- The differences between X_i and D are nearly orthogonal.

Use
$$\chi^2$$
 inner product: $\chi^2_D(X_1, X_2) := \int_{\mathbb{R}^n} X_1(x)X_2(x)/D(x)dx - 1.$

Need:

- Many possible distributions X_i, pretending to be like some distribution D (the uniform distribution in the previous example).
- The differences between X_i and D are nearly orthogonal.

Use
$$\chi^2$$
 inner product: $\chi^2_D(X_1, X_2) := \int_{\mathbb{R}^n} X_1(x) X_2(x) / D(x) dx - 1.$

Theorem (Feldman-Grigorescu-Reyzin-Vempala-Xiao '13) Suppose that there are distributions $X_1, X_2, ..., X_m$ and D so that for all i, j

$$\chi^2_D(X_i, X_j)| \le \begin{cases} \gamma & \text{if } i \neq j \\ \beta & \text{if } i = j \end{cases}$$

Need:

- Many possible distributions X_i, pretending to be like some distribution D (the uniform distribution in the previous example).
- The differences between X_i and D are nearly orthogonal.

Use
$$\chi^2$$
 inner product: $\chi^2_D(X_1, X_2) := \int_{\mathbb{R}^n} X_1(x)X_2(x)/D(x)dx - 1.$

Theorem (Feldman-Grigorescu-Reyzin-Vempala-Xiao '13) Suppose that there are distributions $X_1, X_2, ..., X_m$ and D so that for all i, j

$$|\chi_D^2(X_i, X_j)| \le \begin{cases} \gamma & \text{if } i \neq j \\ \beta & \text{if } i = j \end{cases}$$

Then any statistical query algorithm for learning which of the X_i a distribution is must use either queries of accuracy $O(\sqrt{\gamma})$ or a number of queries $\Omega(m\gamma/\beta)$.

DKS (UCSD/USC)

Lower Bound for Robust Mean

• Take D = N(0, I).

Image: A mathematical states and a mathem

Lower Bound for Robust Mean

- Take D = N(0, I).
- Need: distributions X_1, X_2, \ldots, X_m so that:
 - $d_{TV}(X_i, N(\mu_i, I)) \leq \epsilon$.
 - $|\mu_i \mu_j|$ large for all $i \neq j$.
 - $|\chi_D^2(X_i, X_j)|$ small for all i, j.
 - *m* is large.

• • = • • =

Lower Bound for Robust Mean

- Take D = N(0, I).
- Need: distributions X_1, X_2, \ldots, X_m so that:
 - $d_{TV}(X_i, N(\mu_i, I)) \leq \epsilon$.
 - $|\mu_i \mu_j|$ large for all $i \neq j$.
 - $|\chi_D^2(X_i, X_j)|$ small for all i, j.
 - *m* is large.
- SQ algorithms *can* detect moments. Try to make low degree moments of X_i agree with D.

.

Consider 1D problem:

- D = N(0, 1).
- A is ϵ -close to $N(\mu, 1)$.
- First *d* moments of *A* and *D* agree.

▶ ∢ ⊒

Consider 1D problem:

- D = N(0, 1).
- A is ϵ -close to $N(\mu, 1)$.
- First *d* moments of *A* and *D* agree.

$$A(x) = G(x - \mu) + E(x)$$

▶ ∢ ⊒

$$A(x) = G(x - \mu) + E(x)$$
 where $G(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the Gaussian pdf and:

Image: A mathematical states of the state

 $A(x) = G(x - \mu) + E(x)$ where $G(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the Gaussian pdf and: $|E(x)| \le G(x - \mu) \text{ pointwise.}$

・ 何 ト ・ ヨ ト ・ ヨ ト

$$A(x) = G(x - \mu) + E(x)$$

where $G(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the Gaussian pdf and:
$$|E(x)| \le G(x - \mu) \text{ pointwise.}$$

$$|E|_1 \le \epsilon.$$

Image: A mathematical states of the state

$$A(x) = G(x - \mu) + E(x)$$

where $G(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the Gaussian pdf and:

•
$$|E(x)| \leq G(x - \mu)$$
 pointwise.

- $(2 |E|_1 \leq \epsilon.$
- So E(x) matches first d moments with $G(x) G(x \mu)$. For $k \le d$

$$\int E(x)x^k dx = \mathbb{E}[G^k - (G + \mu)^k] = O_k(\mu)$$

< □ > < 同 > < 回 > < 回 > < 回 >

$$A(x) = G(x - \mu) + E(x)$$

where $G(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the Gaussian pdf and:
(a) $|E(x)| \le G(x - \mu)$ pointwise.
(b) $|E|_1 \le \epsilon$.
(c) $E(x)$ matches first *d* moments with $G(x) - G(x - \mu)$. For $k \le d$

$$\int E(x)x^k dx = \mathbb{E}[G^k - (G + \mu)^k] = O_k(\mu)$$

Idea: $E(x) = p(x)\mathbf{1}(|x| < \sqrt{\log(1/\epsilon)}/2).$

• p is the unique degree-d polynomial so that (3) holds.

• $|p|_{\infty}$ has size $O_d(\mu/\log(1/\epsilon))$.

< □ > < 同 > < 回 > < 回 > < 回 >
Moment Matching

v

$$A(x) = G(x - \mu) + E(x)$$

where $G(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the Gaussian pdf and:
$$|E(x)| \le G(x - \mu) \text{ pointwise.}$$

$$|E|_1 \le \epsilon.$$

$$E(x) \text{ matches first } d \text{ moments with } G(x) - G(x - \mu). \text{ For } k \le a$$

$$\int E(x)x^k dx = \mathbb{E}[G^k - (G + \mu)^k] = O_k(\mu)$$

Idea: $E(x) = p(x)\mathbf{1}(|x| < \sqrt{\log(1/\epsilon)}/2).$

• p is the unique degree-d polynomial so that (3) holds.

• $|p|_{\infty}$ has size $O_d(\mu/\log(1/\epsilon))$.

• (1) holds since $G(x - \mu) = \Omega(\sqrt{\epsilon})$ on the support of E.

• $|E|_1 = O_d(\mu/\sqrt{\log(1/\epsilon)})$, so (2) holds if $\mu \ll_d \epsilon \sqrt{\log(1/\epsilon)}$.

How do we make this *n*-dimensional?

• • • • • • • • • • • •

How do we make this *n*-dimensional?

Idea: Have a copy of *A* in one direction, and standard Gaussian in orthogonal directions.

- (E

How do we make this *n*-dimensional?

Idea: Have a copy of *A* in one direction, and standard Gaussian in orthogonal directions.

For unit vectors v,

$$P_{\nu}(x) = A(\nu \cdot x)(2\pi)^{-(n-1)/2} e^{-(|x|^2 - (x \cdot \nu)^2)/2}$$

.

How do we make this *n*-dimensional?

Idea: Have a copy of A in one direction, and standard Gaussian in orthogonal directions.

For unit vectors v,

$$P_{v}(x) = A(v \cdot x)(2\pi)^{-(n-1)/2}e^{-(|x|^{2}-(x \cdot v)^{2})/2}.$$

If u and v are orthogonal, $\chi_D^2(P_u, P_v) = 0$. Can only fit n mutually orthogonal vectors, so what happens if u, v are *nearly* orthogonal?

Want to evaluate:

 $\int_{\mathbb{R}^n} P_u(x) P_v(x) / G(x) dx.$

< □ > < 同 > < 回 > < 回 > < 回 >

Want to evaluate:

$$\int_{\mathbb{R}^n} P_u(x) P_v(x) / G(x) dx.$$

In directions orthogonal to u and v, get standard Gaussian and integrate out to 1.

٠

Want to evaluate:

$$\int_{\mathbb{R}^n} P_u(x) P_v(x) / G(x) dx.$$

In directions orthogonal to u and v, get standard Gaussian and integrate out to 1. Get

$$\int_{\mathbb{R}^2} A(x)G(y)A(x')G(y')/G(x)G(y)dxdy.$$

DKS (UCSD/USC)

$$\int_{\mathbb{R}^2} A(x)G(y)A(x')G(y')/G(x)G(y)dxdy.$$

Integrate out over y:

$$Q(x) = \int A(x')G(y')dy$$

$$\int_{\mathbb{R}^2} A(x)G(y)A(x')G(y')/G(x)G(y)dxdy.$$

Integrate out over y:

$$Q(x) = \int A(x')G(y')dy$$

= $\int A(x\cos(\theta) + y\sin(\theta))G(x\sin(\theta) - y\cos(\theta))dy$

DKS (UCSD/USC)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\int_{\mathbb{R}^2} A(x)G(y)A(x')G(y')/G(x)G(y)dxdy.$$

Integrate out over y:

$$Q(x) = \int A(x')G(y')dy$$

= $\int A(x\cos(\theta) + y\sin(\theta))G(x\sin(\theta) - y\cos(\theta))dy$
= $U_{\theta}A(x)$

where U_{θ} is the Ornstein-Uhlenbeck operator on functions $f : \mathbb{R} \to \mathbb{R}$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Eigenfunctions of the Ornstein-Uhlenbeck Operator

Linear operator U_{θ} on functions $f : \mathbb{R} \to \mathbb{R}$:

$$U_{\theta}f(x) = \int f(x\cos(\theta) + y\sin(\theta))G(x\sin(\theta) - y\cos(\theta))dy$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Eigenfunctions of the Ornstein-Uhlenbeck Operator

Linear operator U_{θ} on functions $f : \mathbb{R} \to \mathbb{R}$:

$$U_{\theta}f(x) = \int f(x\cos(\theta) + y\sin(\theta))G(x\sin(\theta) - y\cos(\theta))dy$$

Fact (Mehler '66)

$$U_{\theta}(H_kG) = \cos^k(\theta)H_kG.$$

Where H_k is the degree-k Hermite polynomial. They form an orthonormal basis for the inner product

$$\langle f,g\rangle = \int f(x)g(x)G(x)dx.$$

$$\chi_D^2(P_u, P_v) + 1 = \int_{\mathbb{R}^2} A(x)G(y)A(x')G(y')/G(x)G(y)dxdy$$
$$= \int_{\mathbb{R}} A(x)(U_{\theta}A)(x)/G(x)dx.$$

$$\chi_D^2(P_u, P_v) + 1 = \int_{\mathbb{R}^2} A(x)G(y)A(x')G(y')/G(x)G(y)dxdy$$
$$= \int_{\mathbb{R}} A(x)(U_{\theta}A)(x)/G(x)dx.$$

Write

$$A(x) = \sum_{k=0}^{\infty} a_k H_k(x) G(x).$$

DKS (UCSD/USC)

$$\chi_D^2(P_u, P_v) + 1 = \int_{\mathbb{R}^2} A(x)G(y)A(x')G(y')/G(x)G(y)dxdy$$
$$= \int_{\mathbb{R}} A(x)(U_{\theta}A)(x)/G(x)dx.$$

Write

$$A(x) = \sum_{k=0}^{\infty} a_k H_k(x) G(x).$$

$$\chi_D^2(P_u, P_v) + 1 = \int_{\mathbb{R}} \left(\sum_k \cos^k(\theta) a_k H_k(x) \right) \left(\sum_{k'} a_{k'} H_{k'}(x) \right) G(x) dx$$
$$= \sum_{k=0}^{\infty} \cos^k(\theta) a_k^2.$$

DKS (UCSD/USC)

Coefficients

Note that

$$a_k = \int_{\mathbb{R}} H_k(x) A(x) dx.$$

Coefficients

Note that

$$a_k = \int_{\mathbb{R}} H_k(x) A(x) dx.$$

If A(x) and G(x) match first d moments, then for $k \leq d$,

$$a_k = \int_{\mathbb{R}} H_k(x) A(x) dx = \int_{\mathbb{R}} H_k(x) G(x) dx = \begin{cases} 1 & k = 0 \\ 0 & k > 0 \end{cases}$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Coefficients

Note that

$$a_k = \int_{\mathbb{R}} H_k(x) A(x) dx.$$

If A(x) and G(x) match first d moments, then for $k \leq d$,

$$a_k = \int_{\mathbb{R}} H_k(x) A(x) dx = \int_{\mathbb{R}} H_k(x) G(x) dx = \begin{cases} 1 & k = 0 \\ 0 & k > 0 \end{cases}$$

Also

$$\chi_{G}^{2}(A,A) + 1 = \int_{\mathbb{R}} A(x)^{2} / G(x) dx = \int_{\mathbb{R}} \sum_{k,k'} a_{k} a_{k'} H_{k}(x) H_{k'}(x) G(x) dx$$
$$= \sum_{k=0}^{\infty} a_{k}^{2}.$$

DKS (UCSD/USC)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Key Lemma

So

$$\chi_D^2(P_u, P_v) = \sum_{k=0}^{\infty} \cos^k(\theta) a_k^2 - 1$$
$$= \sum_{k>d}^{\infty} \cos^k(\theta) a_k^2$$
$$\leq \cos^{d+1}(\theta) \chi_G^2(A, A).$$

DKS (UCSD/USC)

August, 2018 19 / 33

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Key Lemma

So

$$\chi_D^2(P_u, P_v) = \sum_{k=0}^{\infty} \cos^k(\theta) a_k^2 - 1$$

= $\sum_{k>d}^{\infty} \cos^k(\theta) a_k^2$
 $\leq \cos^{d+1}(\theta) \chi_G^2(A, A).$

Lemma

If A(x) is a one dimensional distribution whose first d moments agree with G(x), then for vectors u and v,

$$|\chi_D^2(P_u,P_v)| \leq |u \cdot v|^{d+1} \chi_G^2(A,A).$$

DKS (UCSD/USC)

< □ > < 同 > < 回 > < Ξ > < Ξ

Packing

Have $\chi_D^2(P_u, P_v)$ small if $u \cdot v$ is. For lower bound need many distributions that are pairwise nearly othrogonal.

Lemma

For 1/2 > c > 0, there exists a collection of $2^{\Omega(n^{1-2c})}$ unit vectors whose pairwise dot products are at most n^{-c} .

• Can find A, ϵ -close to $N(\mu, 1)$ matching first d moments with G with $\mu \ge \epsilon \sqrt{\log(1/\epsilon)}/\operatorname{poly}(d)$.

- Can find A, ϵ -close to $N(\mu, 1)$ matching first d moments with G with $\mu \ge \epsilon \sqrt{\log(1/\epsilon)}/\operatorname{poly}(d)$.
- Have $2^{\Omega(n^{1/3})}$ vectors v_i with $|v_i \cdot v_j| \leq n^{-1/3}$.

< □ > < 同 > < 回 > < 回 > < 回 >

- Can find A, ϵ -close to $N(\mu, 1)$ matching first d moments with G with $\mu \ge \epsilon \sqrt{\log(1/\epsilon)}/\operatorname{poly}(d)$.
- Have $2^{\Omega(n^{1/3})}$ vectors v_i with $|v_i \cdot v_j| \le n^{-1/3}$.
- $|\chi_D^2(P_{v_i}, P_{v_j})| = O(n^{-d/3}).$

- Can find A, ϵ -close to $N(\mu, 1)$ matching first d moments with G with $\mu \ge \epsilon \sqrt{\log(1/\epsilon)}/\operatorname{poly}(d)$.
- Have $2^{\Omega(n^{1/3})}$ vectors v_i with $|v_i \cdot v_j| \le n^{-1/3}$.
- $|\chi_D^2(P_{v_i}, P_{v_j})| = O(n^{-d/3}).$
- The P_{v_i} are ϵ -corrupted Gaussians with means differing by at least μ .

- Can find A, ϵ -close to $N(\mu, 1)$ matching first d moments with G with $\mu \ge \epsilon \sqrt{\log(1/\epsilon)}/\operatorname{poly}(d)$.
- Have $2^{\Omega(n^{1/3})}$ vectors v_i with $|v_i \cdot v_j| \le n^{-1/3}$.
- $|\chi_D^2(P_{v_i}, P_{v_j})| = O(n^{-d/3}).$
- The P_{v_i} are ϵ -corrupted Gaussians with means differing by at least μ .

Theorem

Any SQ algorithm that learns the mean of an ϵ -corrupted Gaussian to error better than $\epsilon \sqrt{\log(1/\epsilon)}/M$ must either make queries with accuracy $n^{-poly(M)}$ or a number of queries $2^{n^{1/3}}$.

Notes

Remark

The lower bound requires both additive and subtractive error. In the Huber model, can achieve $O(\epsilon)$ error in polynomial time.

→ < Ξ → </p>

Notes

Remark

The lower bound requires both additive and subtractive error. In the Huber model, can achieve $O(\epsilon)$ error in polynomial time.

Remark

Improvement is tight up to the polynomial in M. There is an algorithm achieving error $O(\epsilon \sqrt{\log(1/\epsilon)}/M + \epsilon)$ error in $(n/\epsilon)^{poly(M)}$ time.

Algorithm

- Obtain a rough approximation $\hat{\mu}$ to μ .
- **2** Approximate the higher moment tensors of X.
- 3 If for any k the k^{th} moments differ too much from those of $N(\hat{\mu}, I)$, create a filter.
- Otherwise, only a few directions in which higher moments are non-trivial. μ is close to sample mean in the trivial directions.
- Srute force the mean in the non-trivial directions.

Other Applications

This technique is very general and has a number of other applications for proving SQ lower bounds in a number of Gaussian-like problems.

We show that it's hard to robustly learn the covariance to error $o(\epsilon \log(1/\epsilon))$.

• • • • • • • • • •

We show that it's hard to robustly learn the covariance to error $o(\epsilon \log(1/\epsilon))$.

• Need one dimensional distribution:

$$A(x) = G(x/\sigma) + E(x)$$

► < ∃ ►</p>

We show that it's hard to robustly learn the covariance to error $o(\epsilon \log(1/\epsilon))$.

• Need one dimensional distribution:

$$A(x) = G(x/\sigma) + E(x)$$

- Once again E(x):
 - Needs to fix first *d* moments
 - ▶ Is supported on an interval of length $O(\sqrt{\log(1/\epsilon)})$
 - ► Has L¹ norm O(ε).

We show that it's hard to robustly learn the covariance to error $o(\epsilon \log(1/\epsilon))$.

• Need one dimensional distribution:

$$A(x) = G(x/\sigma) + E(x)$$

- Once again E(x):
 - Needs to fix first *d* moments
 - ▶ Is supported on an interval of length $O(\sqrt{\log(1/\epsilon)})$
 - Has L^1 norm $O(\epsilon)$.
- Needs to fix moments by $O(\sigma 1)$, but only needs to fix second on higher degree moments.
- Can do for $\sigma = 1 + \Omega_d(\epsilon \log(1/\epsilon))$.

Result

Theorem

Any SQ algorithm that learns the covariance of an ϵ -corrupted Gaussian to error better than $\epsilon \log(1/\epsilon)/M$ must either make queries with accuracy $n^{-poly(M)}$ or a number of queries $2^{n^{1/3}}$.
To learn the covariance (even in operator norm) robustly, all known algorithms require $\Omega(n^2)$ samples, however information-theoretically, only O(n) are required.

To learn the covariance (even in operator norm) robustly, all known algorithms require $\Omega(n^2)$ samples, however information-theoretically, only O(n) are required.

Can prove SQ lower bound.

One dimensional version:

$$A(x) = (1 - \epsilon)N(0, 1/2) + (\epsilon/2)N(\sqrt{2/\epsilon}, 1/2) + (\epsilon/2)N(-\sqrt{2/\epsilon}, 1/2)$$

• Matches 3 moments with N(0, 1).

One dimensional version:

$$A(x) = (1 - \epsilon)N(0, 1/2) + (\epsilon/2)N(\sqrt{2/\epsilon}, 1/2) + (\epsilon/2)N(-\sqrt{2/\epsilon}, 1/2)$$

• Matches 3 moments with N(0, 1). Have $2^{n^{\Omega(1)}}$ vectors v_i with pairwise dot products $n^{-0.499}$.

One dimensional version:

$$A(x) = (1 - \epsilon)N(0, 1/2) + (\epsilon/2)N(\sqrt{2/\epsilon}, 1/2) + (\epsilon/2)N(-\sqrt{2/\epsilon}, 1/2)$$

• Matches 3 moments with N(0,1).

Have $2^{n^{\Omega(1)}}$ vectors v_i with pairwise dot products $n^{-0.499}$. Gives many P_{v_i} with χ^2 at most $n^{-1.99}$.

One dimensional version:

$$A(x) = (1 - \epsilon)N(0, 1/2) + (\epsilon/2)N(\sqrt{2/\epsilon}, 1/2) + (\epsilon/2)N(-\sqrt{2/\epsilon}, 1/2)$$

• Matches 3 moments with N(0,1).

Have $2^{n^{\Omega(1)}}$ vectors v_i with pairwise dot products $n^{-0.499}$. Gives many P_{v_i} with χ^2 at most $n^{-1.99}$.

Theorem

For ϵ sufficiently large (a careful analysis allows anything subpolynomial), any SQ algorithm that learns the covariance of an ϵ -corrupted Gaussian to constant error needs either queries of accuracy $n^{-0.99}$, or $2^{n^{\Omega(1)}}$ queries.

One dimensional version:

$$A(x) = (1 - \epsilon)N(0, 1/2) + (\epsilon/2)N(\sqrt{2/\epsilon}, 1/2) + (\epsilon/2)N(-\sqrt{2/\epsilon}, 1/2)$$

• Matches 3 moments with N(0,1).

Have $2^{n^{\Omega(1)}}$ vectors v_i with pairwise dot products $n^{-0.499}$. Gives many P_{v_i} with χ^2 at most $n^{-1.99}$.

Theorem

For ϵ sufficiently large (a careful analysis allows anything subpolynomial), any SQ algorithm that learns the covariance of an ϵ -corrupted Gaussian to constant error needs either queries of accuracy $n^{-0.99}$, or $2^{n^{\Omega(1)}}$ queries.

Morally, this means we need either $n^{1.99}$ samples, or exponential time.

Robust Mean Testing

Problem: Given a distribution X that is either:

● *N*(0, *I*)

2 An ϵ -corrupted version of $N(\mu, I)$ for some $|\mu| > \delta$

Determine with 2/3 probability which case we are in.

Robust Mean Testing

Problem: Given a distribution X that is either:

- N(0, I)
- 2 An ϵ -corrupted version of $N(\mu, I)$ for some $|\mu| > \delta$

Determine with 2/3 probability which case we are in.

Remark

In the noiseless case, this requires only $O(\sqrt{n}/\delta^2)$ samples, which is much better than the complexity of $O(n/\delta^2)$ required for learning.

If $\delta = o(\epsilon \sqrt{\log(1/\epsilon)})$, construct moment matching A's and P_v as before.

< □ > < 同 > < 回 > < Ξ > < Ξ

If $\delta = o(\epsilon \sqrt{\log(1/\epsilon)})$, construct moment matching A's and P_v as before.

• Prove information-theoretic lower bounds.

Image: Image:

.

If $\delta = o(\epsilon \sqrt{\log(1/\epsilon)})$, construct moment matching A's and P_v as before.

- Prove *information-theoretic* lower bounds.
- Find collection of v_i , make X either N(0, I) or a random P_{v_i} .

If $\delta = o(\epsilon \sqrt{\log(1/\epsilon)})$, construct moment matching A's and P_v as before.

- Prove information-theoretic lower bounds.
- Find collection of v_i , make X either N(0, I) or a random P_{v_i} .
- Either see sample from G^N or from $P_{v_*}^N$ (pick random v_i and return N i.i.d samples from P_{v_i}).
 - Can you distinguish G^N from $P_{v_*}^N$?

If $\delta = o(\epsilon \sqrt{\log(1/\epsilon)})$, construct moment matching A's and P_v as before.

- Prove information-theoretic lower bounds.
- Find collection of v_i , make X either N(0, I) or a random P_{v_i} .
- Either see sample from G^N or from $P_{v_*}^N$ (pick random v_i and return N i.i.d samples from P_{v_i}).
 - Can you distinguish G^N from $P_{v_*}^N$?
- Enough to show $\chi^2_{G^N}(P^N_{v_*}, P^N_{v_*})$ is small.

Calculation

$$\begin{split} \chi^2_{G^N}(P^N_{v_*}, P^N_{v_*}) + 1 &= \mathbb{E}_{i,j}[\chi^2_{G^N}(P^N_{v_i}, P^N_{v_j}) + 1] \\ &= \mathbb{E}_{i,j}[(\chi^2_G(P_{v_i}, P_{v_j}) + 1)^N] \\ &= \mathbb{E}_{i,j}[(1 + O(v_i \cdot v_j)^d)^N]. \end{split}$$

< □ > < □ > < □ > < □ > < □ >

Calculation

$$\begin{split} \chi^2_{G^N}(P^N_{v_*}, P^N_{v_*}) + 1 &= \mathbb{E}_{i,j}[\chi^2_{G^N}(P^N_{v_i}, P^N_{v_j}) + 1] \\ &= \mathbb{E}_{i,j}[(\chi^2_G(P_{v_i}, P_{v_j}) + 1)^N] \\ &= \mathbb{E}_{i,j}[(1 + O(v_i \cdot v_j)^d)^N]. \end{split}$$

There's a 1/m probability that i = j and then have $2^{O(N)}$. Otherwise, have $\exp(O((v_i \cdot v_j)^d N))$.

▲ 同 ▶ → 三 ▶

Calculation

$$\begin{split} \chi^2_{G^N}(P^N_{v_*}, P^N_{v_*}) + 1 &= \mathbb{E}_{i,j}[\chi^2_{G^N}(P^N_{v_i}, P^N_{v_j}) + 1] \\ &= \mathbb{E}_{i,j}[(\chi^2_G(P_{v_i}, P_{v_j}) + 1)^N] \\ &= \mathbb{E}_{i,j}[(1 + O(v_i \cdot v_j)^d)^N]. \end{split}$$

There's a 1/m probability that i = j and then have $2^{O(N)}$. Otherwise, have $\exp(O((v_i \cdot v_j)^d N))$.

Small if:

2^{O(N)} « m.
(v_i · v_j)^d « 1/N for all i ≠ j.

Result

Can pick $m = 2^{n^{0.999}}$ vectors with $|v_i \cdot v_j| < n^{-\Omega(1)}$. Taking d large enough, $N < |v_i \cdot v_j|^{-d}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Result

Can pick $m = 2^{n^{0.999}}$ vectors with $|v_i \cdot v_j| < n^{-\Omega(1)}$. Taking d large enough, $N < |v_i \cdot v_j|^{-d}$.

Theorem

Any algorithm to robustly test the mean of a Gaussian for $\delta = o(\epsilon \sqrt{\log(1/\epsilon)})$ requires at least $n^{0.99}$ samples.

Conclusions

We have a general framework for proving computational lower bounds for Gaussian-ish learning problems that yields near-optimal bounds in a number of cases.