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Mean Estimation Error

Robustly estimate the mean of an e-corrupted Gaussian:

o Can achieve error O(e/log(1/¢€)) in polynomial time.

@ Can achieve error O(e) information theoretically.
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Mean Estimation Error

Robustly estimate the mean of an e-corrupted Gaussian:
o Can achieve error O(e/log(1/¢€)) in polynomial time.
@ Can achieve error O(e) information theoretically.

Question: What is the best error that can be achieve efficiently?
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Lower Bounds

The ey/log(1/¢) seems right, but how do we prove it?
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Lower Bounds

The ey/log(1/¢) seems right, but how do we prove it?

Can't do so unconditionally, since TukeyMedian € PH. Even hardness
reductions seem difficult since they would need to be very average case.
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Lower Bounds

The ey/log(1/¢) seems right, but how do we prove it?

Can't do so unconditionally, since TukeyMedian € PH. Even hardness
reductions seem difficult since they would need to be very average case.

So we work in a restricted computational model.
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Model

What sorts of things do our algorithms do?
@ Approximate moments of distributions.

@ Approximate moments after applying filters or weights.
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Model

What sorts of things do our algorithms do?
@ Approximate moments of distributions.
@ Approximate moments after applying filters or weights.

o Generally, approximate expectations of functions of distributions.
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Statistical Queries [Kearns '93]

Given i.i.d. samples X1, Xo, ..., Xy can use to approximate expectations of
(normalized) functions to error O(1/v/N).
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Statistical Queries [Kearns '93]

Given i.i.d. samples X1, Xo, ..., Xy can use to approximate expectations of
(normalized) functions to error O(1/v/N).

Query: A Stat(7) query takes a function f : R” — [—1, 1] and returns a
v so that [E[f(X)] —v| < 7.
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Statistical Queries [Kearns '93]

Given i.i.d. samples X1, Xo, ..., Xy can use to approximate expectations of
(normalized) functions to error O(1/v/N).

Query: A Stat(7) query takes a function f : R” — [—1, 1] and returns a
v so that [E[f(X)] —v| < 7.

Model: An SQ algorithm can adaptively make statistical queries at
accuracy 7.
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Statistical Queries [Kearns '93]

Given i.i.d. samples X1, Xo, ..., Xy can use to approximate expectations of
(normalized) functions to error O(1/v/N).

Query: A Stat(7) query takes a function f : R” — [—1, 1] and returns a
v so that [E[f(X)] —v| < 7.

Model: An SQ algorithm can adaptively make statistical queries at

accuracy 7. Morally, this corresponds to an algorithm with Number of
Samples O(772) and Runtime equal to number of queries.
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Power of SQ

@ Restricted Model: Hope to prove unconditional lower bounds
information-theoretically.
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Power of SQ

@ Restricted Model: Hope to prove unconditional lower bounds
information-theoretically.
o Powerful Model: Wide range of algorithmic techniques can be
formalized in SQ:
> Filter & Convex Program techniques for robust statistics.
» PAC learning for ACP, decision trees, linear separators, boosting.
» Unsupervised Learning: stochastic convex optimization, moment-based

methods, k-means clustering, EM,
... [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM17]
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Power of SQ

@ Restricted Model: Hope to prove unconditional lower bounds
information-theoretically.

o Powerful Model: Wide range of algorithmic techniques can be
formalized in SQ:
> Filter & Convex Program techniques for robust statistics.
» PAC learning for ACP, decision trees, linear separators, boosting.
» Unsupervised Learning: stochastic convex optimization, moment-based
methods, k-means clustering, EM,
... [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM17]

e Only Major Exception: Gaussian elimination over finite fields (for
example, for learning parity).
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SQ Lower Bounds [Kearns]

Example: Learning parities: X is the uniform distribution over a random
dimension n — 1 subspace of FJ.
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SQ Lower Bounds [Kearns]

Example: Learning parities: X is the uniform distribution over a random
dimension n — 1 subspace of FJ.

Test function f . A
E[f(X)] = (f(1) + f(x))

where X is uniform over the halfspace defined by the character y.
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SQ Lower Bounds [Kearns]

Example: Learning parities: X is the uniform distribution over a random
dimension n — 1 subspace of FJ.

Test function f . A
E[f(X)] = (f(1) + f(x))

where X is uniform over the halfspace defined by the character y.

Oracle could return 7(1) unless |f(x)| > 7.
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SQ Lower Bounds [Kearns]

Example: Learning parities: X is the uniform distribution over a random

dimension n — 1 subspace of FJ.

Test function f . A
E[f(X)] = (f(1) + f(x))

where X is uniform over the halfspace defined by the character y.

Oracle could return #(1) unless |f(x)| > 7. Plancherel Inequality says

> PO =Eyemlif )P < 1.
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SQ Lower Bounds [Kearns]

Example: Learning parities: X is the uniform distribution over a random

dimension n — 1 subspace of FJ.

Test function f A A
E[f(X)] = (f(1) + f(x))

where X is uniform over the halfspace defined by the character y.

Oracle could return (1) unless |f(x)| > 7. Plancherel Inequality says

YOI =Eyemllf ()P < 1.

Unless 7 is exponentially small, |#(x)| > 7 with exponentially small
probability over choice of X.
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SQ Lower Bounds [Kearns]

Example: Learning parities: X is the uniform distribution over a random

dimension n — 1 subspace of FJ.

Test function f . A
E[f(X)] = (f(1) + f(x))

where X is uniform over the halfspace defined by the character y.

Oracle could return (1) unless |f(x)| > 7. Plancherel Inequality says

YOI =Eyemllf ()P < 1.

Unless 7 is exponentially small, |#(x)| > 7 with exponentially small
probability over choice of X.

Upshot: Either 7 exponentially small, or exponentially many queries
required.
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General Lower Bound Method
Need:

@ Many possible distributions X;, pretending to be like some distribution
D (the uniform distribution in the previous example).

@ The differences between X; and D are nearly orthogonal.
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General Lower Bound Method
Need:

@ Many possible distributions X;, pretending to be like some distribution
D (the uniform distribution in the previous example).

@ The differences between X; and D are nearly orthogonal.

Use x? inner product: x5 (X1, X2) := / X1(x)Xa(x)/D(x)dx — 1.
Rn
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General Lower Bound Method
Need:

@ Many possible distributions X;, pretending to be like some distribution
D (the uniform distribution in the previous example).

@ The differences between X; and D are nearly orthogonal.

Use x2 inner product: x5 (X1, Xz) := / X1(x)Xa(x)/D(x)dx — 1.
Rn

Theorem (Feldman-Grigorescu-Reyzin-Vempala-Xiao '13)
Suppose that there are distributions X1, X, ..., Xy and D so that for all
oy
v oiFE]
IXB(Xi, Xj)| < R
B oifi=]

v
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General Lower Bound Method
Need:

@ Many possible distributions X;, pretending to be like some distribution
D (the uniform distribution in the previous example).

@ The differences between X; and D are nearly orthogonal.

Use x2 inner product: x5 (X1, Xz) := / X1(x)Xa(x)/D(x)dx — 1.
Rn

Theorem (Feldman-Grigorescu-Reyzin-Vempala-Xiao '13)

Suppose that there are distributions X1, X, ..., Xy and D so that for all
iJ

vofiFE)

X <47 T

B oifi=]j
Then any statistical query algorithm for learning which of the X; a
distribution is must use either queries of accuracy O(,/Y) or a number of
queries Q(m~/3).

v
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Lower Bound for Robust Mean

e Take D = N(0,/).
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Lower Bound for Robust Mean

e Take D = N(0,/).
@ Need: distributions X1, Xo, ..., X, so that:

> dT\/()(,'7 N(p,,', I)) <e

> |pi — py| large for all i # j.
> |x3(Xi, X;)| small for all i, ;.
» mis large.
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Lower Bound for Robust Mean

e Take D = N(0,/).
@ Need: distributions X1, Xo, ..., X, so that:

> dT\/()(,'7 N(p,,', I)) <e

> |ui — pj| large for all i # j.
> |x3(Xi, X;)| small for all i, ;.
» mis large.

@ SQ algorithms can detect moments. Try to make low degree
moments of X; agree with D.
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Moment Matching

Consider 1D problem:
e D=N(0,1).
@ Ais eclose to N(p,1).

o First d moments of A and D agree.
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Moment Matching

Consider 1D problem:
e D=N(0,1).
@ Ais eclose to N(p,1).
o First d moments of A and D agree.
A(x) = G(x — u) + E(x)
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Moment Matching

where G(x) =

V2r

™

A(x) = G(x — u) + E(x)
Le—xz/Z

is the Gaussian pdf and:
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Moment Matching

A(x) = G(x — u) + E(x)

where G(x) = —t=e~*"/2 is the Gaussian pdf and:

V2m
Q@ |E(x)| < G(x — p) pointwise.
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Moment Matching

A(x) = G(x — u) + E(x)

_ 1 _—x%/2: : .
where G(x) = Nerdd is the Gaussian pdf and:
Q@ |E(x)| < G(x — p) pointwise.
Q |Ei <e
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Moment Matching

A(x) = G(x — u) + E(x)
where G(x) = \/%e—%/z is the Gaussian pdf and:
Q@ |E(x)| < G(x — p) pointwise.
Q |Ei <e
© E(x) matches first d moments with G(x) — G(x — u). For k < d

/ E(x)x*dx = E[G* — (G + )] = Ox(n)
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Moment Matching

A(x) = G(x — u) + E(x)
where G(x) = \/%e—%/z is the Gaussian pdf and:
Q@ |E(x)| < G(x — p) pointwise.
Q |Ei <e
@ E(x) matches first d moments with G(x) — G(x — ). For k < d

/ E(x)x*dx = E[G* — (G + )] = O(n)
Idea: E(x) = p(x)1(|x| < y/log(1/€)/2).

@ p is the unique degree-d polynomial so that (3) holds.
> |p|loo has size Oy(p/ log(1/€)).
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Moment Matching

A(x) = G(x — ) + E(x)
where G(x) = \/%e_xz/z is the Gaussian pdf and:
Q |E(x)| < G(x — ) pointwise.
Q |El; <e.
@ E(x) matches first d moments with G(x) — G(x — ). For k < d

/E(x)xkdx =E[G* — (G + 1)k] = Ok(p)

Idea: E(x) = p(x)1(|x| < y/log(1/€)/2).
@ p is the unique degree-d polynomial so that (3) holds.
> |p|loo has size Oy(p/ log(1/€)).
@ (1) holds since G(x — p) = Q(+/€) on the support of E.

o |E|1 = Og4(p/+/1log(1/€)), so (2) holds if ;1 <4 €+/log(1/€).
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Higher Dimensions

How do we make this n-dimensional?

DKS (UCSD/USC)

SQ Lower Bounds



Higher Dimensions

How do we make this n-dimensional?

Idea: Have a copy of A in one direction, and standard Gaussian in
orthogonal directions.
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Higher Dimensions

How do we make this n-dimensional?

Idea: Have a copy of A in one direction, and standard Gaussian in
orthogonal directions.

For unit vectors v,

PV(X) = A(V . X)(27.(_)—(n—l)/2e—(|X|2—(X~V)2)/2.
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Higher Dimensions

How do we make this n-dimensional?

Idea: Have a copy of A in one direction, and standard Gaussian in
orthogonal directions.

For unit vectors v,
PV(X) f A(V . X)(27‘(‘)_(n_l)/2e_(|X|2_(X'V)2)/2.

If u and v are orthogonal, x%(Py, P,) = 0. Can only fit n mutually
orthogonal vectors, so what happens if u, v are nearly orthogonal?
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Computation

Want to evaluate:
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/ Po(x)Py (x)/G(x)dx.
g
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Computation
Want to evaluate:

/ Po(x)Py (x)/G(x)dx.
g

In directions orthogonal to u and v, get standard Gaussian and integrate
out to 1.
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Computation
Want to evaluate:

/ Po(x)Py (x)/G(x)dx.
g

In directions orthogonal to u and v, get standard Gaussian and integrate
out to 1. Get

/Rz A(X)G(y)A(X)G(y')/ G(x)G(y)dxdy.
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Computation

/Rz AX)G(y)A(X)G(y')/ G(x)G(y)dxdy.

Integrate out over y:

Q) = [ A)6()dy
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Computation

/Rz AX)G(y)A(X)G(y')/ G(x)G(y)dxdy.

Integrate out over y:
Q) = [ AX)G()dy

= /A(x cos(0) + y sin(0))G(xsin(8) — y cos(6))dy
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Computation

/Rz A(x)G(y)A(X)G(y')/ G(x)G(y)dxdy.
Integrate out over y:
Qb= / A(x)G(y")dy

= /A(x cos(0) + y sin(0))G(xsin(8) — y cos(6))dy
= UpA(x)

where Uy is the Ornstein-Uhlenbeck operator on functions f : R — R.
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Eigenfunctions of the Ornstein-Uhlenbeck Operator

Linear operator Uy on functions f : R — R:

Upf(x) = /f(x cos(f) + ysin(6))G(xsin(0) — y cos(0))dy
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Eigenfunctions of the Ornstein-Uhlenbeck Operator
Linear operator Uy on functions f : R — R:

Upf(x) = /f(x cos(f) + ysin(6))G(xsin(0) — y cos(0))dy

Fact (Mehler '66)

Up(Hy G) = cos*(A)HyG.

Where Hy is the degree-k Hermite polynomial. They form an orthonormal
basis for the inner product

(f.g) :/f(x)g(X)G(X)dx.
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Computation

B(PuP)+1= [ ACHARIG)/G(x)G()dy

- /R A()(UpA)(x)/ G (x)dx.
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Computation

B(PuP)+1= [ ACHARIG)/G(x)G()dy

- /R A()(UpA)(x)/ G (x)dx.

Write -
A(x) = aHi(x) G (x).
k=0
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Computation

Bo(Pu Py) + 1= / A()G(y)A(X)G(y')/G(x)G(y)dxdy

RZ

- /R A()(UpA)(x)/ G (x)dx.

Write -
= akHi(x)G(x).
k=0

x5 (P, P,) +1 —/ <Z cos*(0)ay Hi(x ) (Z ak Hir (x) ) G(x)dx
= Zcos (6)a3.
k=0
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Coefficients

Note that
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Coefficients

Note that

ay = / Hi (x)A(x)dx.
R
If A(x) and G(x) match first d moments, then for k < d,

1 k=0

ax = /RHk(X)A(X)dX = /R Hi(x) G (x)dx = {0 k>0
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Coefficients

Note that

ay = / Hi (x)A(x)dx.
R
If A(x) and G(x) match first d moments, then for k < d,

1 k=0
ax = /RHk(X)A(X)dX = /R Hi(x) G (x)dx = {0 k>0

Also

Xs(AA)+1=

T

Ax)/ dx_/Zakak/Hk ) Hier(x) G (x)

k,k’

I
NE
LN

>
Il
<}
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Key Lemma
So

P’-’aP

Zcosk(a 2 - .
= Z COsk(e)ak

k>d

< cos®TH(0)xE (A, A)
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Key Lemma

So
Pu, P,) Zcosk(e a; —1
= Z cosk(6)a?
k>d
< cos?TH(O)xZ (A, A).
Lemma

If A(x) is a one dimensional distribution whose first d moments agree with
G(x), then for vectors u and v,

|X2D(PU7 Pv)l < ’u’ V|d+1XZG(A7A)‘
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Packing

Have x%(P,, P,) small if u- v is. For lower bound need many distributions
that are pairwise nearly othrogonal.

Lemma

For1/2 > ¢ > 0, there exists a collection of 22n"%) unit vectors whose
pairwise dot products are at most n~€.
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Putting it Together

e Can find A, e-close to N(u,1) matching first d moments with G with

p = €y/log(1/€)/poly(d).

DKS (UCSD/USC) SQ Lower Bounds August, 2018 21/33



Putting it Together

e Can find A, e-close to N(u,1) matching first d moments with G with
p = €y/log(1/€)/poly(d).

o Have 22""*) vectors vi with |v; - vj| < n~1/3.
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Putting it Together

e Can find A, e-close to N(u,1) matching first d moments with G with
p = €y/log(1/€)/poly(d).

o Have 22%""*) vectors v; with lvi-vji| <n

o [xp (P, Py)| = O(n=973).

-1/3
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Putting it Together

e Can find A, e-close to N(u,1) matching first d moments with G with
p = €y/log(1/€)/poly(d).
Have 22("") vectors v; with lvi-vji| <n
XB(Py, Py)l = O(n™ 7).

The Py, are e-corrupted Gaussians with means differing by at least .

-1/3
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Putting it Together

e Can find A, e-close to N(u,1) matching first d moments with G with

p = €y/log(1/€)/poly(d).

o Have 2%"") vectors v; with |vi - vj| < nm 13
° |X2D(PV,'7 PVJ)| = O(n_d/3)'
@ The P,, are e-corrupted Gaussians with means differing by at least .

Theorem

Any SQ algorithm that learns the mean of an e-corrupted Gaussian to
error better than ey/log(1/€)/M must either make queries with accuracy

— o 1/3
n=PWM) or 3 number of queries 2" .

DKS (UCSD/USC) SQ Lower Bounds August, 2018 21/33



Notes

Remark

The lower bound requires both additive and subtractive error. In the
Huber model, can achieve O(€) error in polynomial time.
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Notes

Remark
The lower bound requires both additive and subtractive error. In the
Huber model, can achieve O(€) error in polynomial time.

Remark
Improvement is tight up to the polynomial in M. There is an algorithm

achieving error O(e\/log(1/€)/M + €) error in (n/e)P°M) time.
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Algorithm

@ Obtain a rough approximation i to .
@ Approximate the higher moment tensors of X.

@ If for any k the k' moments differ too much from those of N(f, /),
create a filter.

@ Otherwise, only a few directions in which higher moments are
non-trivial. u is close to sample mean in the trivial directions.

@ Brute force the mean in the non-trivial directions.
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Other Applications

This technique is very general and has a number of other applications for
proving SQ lower bounds in a number of Gaussian-like problems.
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Robust Covariance

o(elog(1/¢)).

We show that it's hard to robustly learn the covariance to error
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Robust Covariance

We show that it's hard to robustly learn the covariance to error
o(elog(1/e)).

@ Need one dimensional distribution:

A(x) = G(x/o) + E(x)
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Robust Covariance

We show that it's hard to robustly learn the covariance to error
o(elog(1/e)).

@ Need one dimensional distribution:

A(x) = G(x/o) + E(x)

@ Once again E(x):
» Needs to fix first d moments

» Is supported on an interval of length O(4/log(1/¢))
» Has L! norm O(e).
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Robust Covariance

We show that it's hard to robustly learn the covariance to error
o(elog(1/e€)).

@ Need one dimensional distribution:

A(x) = G(x/o) + E(x)

@ Once again E(x):
» Needs to fix first d moments

» Is supported on an interval of length O(4/log(1/¢))
» Has L! norm O(e).

@ Needs to fix moments by O(c — 1), but only needs to fix second on
higher degree moments.

e Can do for 0 = 1+ Qg(elog(1/¢)).
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Result

Theorem

Any SQ algorithm that learns the covariance of an e-corrupted Gaussian to
error better than elog(1/€)/M must either make queries with accuracy
n~PWM) or 3 number of queries o3,
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Covariance Sample Complexity

To learn the covariance (even in operator norm) robustly, all known
algorithms require Q(n?) samples, however information-theoretically, only
O(n) are required.
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Covariance Sample Complexity

To learn the covariance (even in operator norm) robustly, all known

algorithms require Q(n?) samples, however information-theoretically, only
O(n) are required.

Can prove SQ lower bound.
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Covariance Sample Complexity

One dimensional version:

A(x) = (1 = )N(0,1/2) + (¢/2)N(\/2/€,1/2) + (¢/2)N

e Matches 3 moments with N(0,1).
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Covariance Sample Complexity

One dimensional version:

A(x) = (1 — €)N(0,1/2) + (¢/2)N(1/2/€,1/2) + (¢/2)N(—+/2/€,1/2)

e Matches 3 moments with N(0,1).

Q 1 - . .
Have 27" vectors v; with pairwise dot products n=0-4%9.
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Covariance Sample Complexity

One dimensional version:

A(x) = (1 — €)N(0,1/2) + (¢/2)N(1/2/€,1/2) + (¢/2)N(—+/2/€,1/2)

e Matches 3 moments with N(0,1).

Q . . . .
Have 27" vectors v; with pairwise dot products n=%4%°. Gives many P,
with x? at most n=199,
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Covariance Sample Complexity

One dimensional version:

A(x) = (1 — €)N(0,1/2) + (¢/2)N(1/2/€,1/2) + (e/2)N(—~/2/€,1/2)

e Matches 3 moments with N(0,1).

Q . . . .
Have 27" vectors v; with pairwise dot products n=%4%°. Gives many P,
with x? at most n=199,

Theorem

For € sufficiently large (a careful analysis allows anything subpolynomial),
any SQ algorithm that learns the covariance of an e- corrupted Gaussian to
constant error needs either queries of accuracy n=9%°, or 2" o6 queries.
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Covariance Sample Complexity

One dimensional version:

A(x) = (1 — €)N(0,1/2) + (¢/2)N(1/2/€,1/2) + (e/2)N(—~/2/€,1/2)

e Matches 3 moments with N(0,1).

Q . . . .
Have 27" vectors v; with pairwise dot products n=%4%°. Gives many P,
with x? at most n=199,

Theorem

For € sufficiently large (a careful analysis allows anything subpolynomial),
any SQ algorithm that learns the covariance of an e- corrupted Gaussian to
constant error needs either queries of accuracy n=9%°, or 2" o6 queries.

1.99

Morally, this means we need either n** samples, or exponential time.

DKS (UCSD/USC) SQ Lower Bounds August, 2018 28/33



Robust Mean Testing

Problem: Given a distribution X that is either:
@ N(O, 1)
@ An e-corrupted version of N(u, ) for some || > ¢

Determine with 2/3 probability which case we are in.
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Robust Mean Testing

Problem: Given a distribution X that is either:

Q@ N(0,/)

@ An e-corrupted version of N(u, ) for some || > ¢
Determine with 2/3 probability which case we are in.

Remark

In the noiseless case, this requires only O(y/n/8?) samples, which is much
better than the complexity of O(n/?) required for learning.
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Lower Bound Framework

If 6 = o(e4/log(1/€)), construct moment matching A's and P, as before.
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Lower Bound Framework

If & = o(ey/log(1/€)), construct moment matching A’'s and P, as before.

@ Prove information-theoretic lower bounds.
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Lower Bound Framework

If & = o(ey/log(1/€)), construct moment matching A’'s and P, as before.

@ Prove information-theoretic lower bounds.

e Find collection of v;, make X either N(O, /) or a random P,,.
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Lower Bound Framework

If & = o(ey/log(1/€)), construct moment matching A’'s and P, as before.

@ Prove information-theoretic lower bounds.
e Find collection of v;, make X either N(O, /) or a random P,,.

o Either see sample from GV or from P",\*/ (pick random v; and return N
i.i.d samples from P,.).

» Can you distinguish GV from Pﬁ?
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Lower Bound Framework

If & = o(ey/log(1/€)), construct moment matching A’'s and P, as before.

Prove information-theoretic lower bounds.

Find collection of v;, make X either N(0,/) or a random P,,.

Either see sample from GV or from P",\*' (pick random v; and return N
i.i.d samples from P,,).

» Can you distinguish GV from Pﬁ?

Enough to show X%N(P",\i, PYY is small.
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Calculation

Xen(Po, P + 1 =Eij[xen(PY, P)) + 1]

= Eij[(x%(Pus Pyy) + 1))
=Eij[(1+ O(vi - vj)®)M].
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Calculation

Xen(PY, PU) + 1 =Eij[xgu(PY, PY) + 1]
= Eij[(¢3(Py, Pyy) + 1)V]
= Eij[(1 + O(vi - v)?)M].

There's a 1/m probability that i = j and then have 20(V) . Otherwise,
have exp(O((v; - v;)N)).
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Calculation

Xen(PY, PU) + 1 =Eij[xgu(PY, PY) + 1]
= Eij[(¢3(Py, Pyy) + 1)V]
= Eij[(1 + O(vi - v)?)M].

There's a 1/m probability that i = j and then have 20(V) . Otherwise,
have exp(O((v; - v;)N)).

Small if:
0 2°M) <« m.
@ (vi-v))? < 1/N forall i #j.
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Result

9
enough, N < |v; - v;| 9.

Can pick m = 2™**° vectors with lvi - vj| < n~(1). Taking d large
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Result

Can pick m = 21" Vectors with lvi - vj| < n~1). Taking d large
enough, N < |v; - v;| 9.
Theorem

Any algorithm to robustly test the mean of a Gaussian for
§ = o(e\/log(1/€)) requires at least n®° samples.
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Conclusions

We have a general framework for proving computational lower bounds for

Gaussian-ish learning problems that yields near-optimal bounds in a
number of cases.
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