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Mean Estimation Error

Robustly estimate the mean of an ε-corrupted Gaussian:

Can achieve error O(ε
√

log(1/ε)) in polynomial time.

Can achieve error O(ε) information theoretically.

Question: What is the best error that can be achieve efficiently?
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Lower Bounds

The ε
√

log(1/ε) seems right, but how do we prove it?

Can’t do so unconditionally, since TukeyMedian ∈ PH. Even hardness
reductions seem difficult since they would need to be very average case.

So we work in a restricted computational model.
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Model

What sorts of things do our algorithms do?

Approximate moments of distributions.

Approximate moments after applying filters or weights.

Generally, approximate expectations of functions of distributions.
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Statistical Queries [Kearns ’93]

Given i.i.d. samples X1,X2, . . . ,XN can use to approximate expectations of
(normalized) functions to error O(1/

√
N).

Query: A Stat(τ) query takes a function f : Rn → [−1, 1] and returns a
v so that |E[f (X )]− v | ≤ τ .

Model: An SQ algorithm can adaptively make statistical queries at
accuracy τ . Morally, this corresponds to an algorithm with Number of
Samples O(τ−2) and Runtime equal to number of queries.
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Power of SQ

Restricted Model: Hope to prove unconditional lower bounds
information-theoretically.

Powerful Model: Wide range of algorithmic techniques can be
formalized in SQ:

I Filter & Convex Program techniques for robust statistics.
I PAC learning for AC 0, decision trees, linear separators, boosting.
I Unsupervised Learning: stochastic convex optimization, moment-based

methods, k-means clustering, EM,
. . . [Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM17]

Only Major Exception: Gaussian elimination over finite fields (for
example, for learning parity).
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SQ Lower Bounds [Kearns]
Example: Learning parities: X is the uniform distribution over a random
dimension n − 1 subspace of Fn

2.

Test function f
E[f (X )] = (f̂ (1) + f̂ (χ))

where X is uniform over the halfspace defined by the character χ.

Oracle could return f̂ (1) unless |f̂ (χ)| ≥ τ . Plancherel Inequality says∑
χ

|f̂ (χ)|2 = Ey∈uFn
2
[|f (y)|2] ≤ 1.

Unless τ is exponentially small, |f̂ (χ)| > τ with exponentially small
probability over choice of X .

Upshot: Either τ exponentially small, or exponentially many queries
required.
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General Lower Bound Method
Need:

Many possible distributions Xi , pretending to be like some distribution
D (the uniform distribution in the previous example).

The differences between Xi and D are nearly orthogonal.

Use χ2 inner product: χ2
D(X1,X2) :=

∫
Rn

X1(x)X2(x)/D(x)dx − 1.

Theorem (Feldman-Grigorescu-Reyzin-Vempala-Xiao ’13)

Suppose that there are distributions X1,X2, . . . ,Xm and D so that for all
i , j

|χ2
D(Xi ,Xj)| ≤

{
γ if i 6= j

β if i = j

Then any statistical query algorithm for learning which of the Xi a
distribution is must use either queries of accuracy O(

√
γ) or a number of

queries Ω(mγ/β).
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Lower Bound for Robust Mean

Take D = N(0, I ).

Need: distributions X1,X2, . . . ,Xm so that:
I dTV (Xi ,N(µi , I )) ≤ ε.
I |µi − µj | large for all i 6= j .
I |χ2

D(Xi ,Xj)| small for all i , j .
I m is large.

SQ algorithms can detect moments. Try to make low degree
moments of Xi agree with D.
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Moment Matching

Consider 1D problem:

D = N(0, 1).

A is ε-close to N(µ, 1).

First d moments of A and D agree.

A(x) = G (x − µ) + E (x)
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Moment Matching

A(x) = G (x − µ) + E (x)

where G (x) = 1√
2π
e−x

2/2 is the Gaussian pdf and:

1 |E (x)| ≤ G (x − µ) pointwise.

2 |E |1 ≤ ε.
3 E (x) matches first d moments with G (x)− G (x − µ). For k ≤ d∫

E (x)xkdx = E[G k − (G + µ)k ] = Ok(µ)

Idea: E (x) = p(x)1(|x | <
√

log(1/ε)/2).

p is the unique degree-d polynomial so that (3) holds.
I |p|∞ has size Od(µ/ log(1/ε)).

(1) holds since G (x − µ) = Ω(
√
ε) on the support of E .

|E |1 = Od(µ/
√

log(1/ε)), so (2) holds if µ�d ε
√

log(1/ε).
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Higher Dimensions

How do we make this n-dimensional?

Idea: Have a copy of A in one direction, and standard Gaussian in
orthogonal directions.

For unit vectors v ,

Pv (x) = A(v · x)(2π)−(n−1)/2e−(|x |2−(x ·v)2)/2.

If u and v are orthogonal, χ2
D(Pu,Pv ) = 0. Can only fit n mutually

orthogonal vectors, so what happens if u, v are nearly orthogonal?
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Computation
Want to evaluate: ∫

Rn

Pu(x)Pv (x)/G (x)dx .

In directions orthogonal to u and v , get standard Gaussian and integrate
out to 1. Get ∫

R2

A(x)G (y)A(x ′)G (y ′)/G (x)G (y)dxdy .
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Computation

∫
R2

A(x)G (y)A(x ′)G (y ′)/G (x)G (y)dxdy .

Integrate out over y :

Q(x) =

∫
A(x ′)G (y ′)dy

=

∫
A(x cos(θ) + y sin(θ))G (x sin(θ)− y cos(θ))dy

= UθA(x)

where Uθ is the Ornstein-Uhlenbeck operator on functions f : R→ R.
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A(x cos(θ) + y sin(θ))G (x sin(θ)− y cos(θ))dy

= UθA(x)

where Uθ is the Ornstein-Uhlenbeck operator on functions f : R→ R.
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Eigenfunctions of the Ornstein-Uhlenbeck Operator

Linear operator Uθ on functions f : R→ R:

Uθf (x) =

∫
f (x cos(θ) + y sin(θ))G (x sin(θ)− y cos(θ))dy

Fact (Mehler ’66)

Uθ(HkG ) = cosk(θ)HkG .

Where Hk is the degree-k Hermite polynomial. They form an orthonormal
basis for the inner product

〈f , g〉 =

∫
f (x)g(x)G (x)dx .
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Computation

χ2
D(Pu,Pv ) + 1 =

∫
R2

A(x)G (y)A(x ′)G (y ′)/G (x)G (y)dxdy

=

∫
R
A(x)(UθA)(x)/G (x)dx .

Write

A(x) =
∞∑
k=0

akHk(x)G (x).

χ2
D(Pu,Pv ) + 1 =

∫
R

(∑
k

cosk(θ)akHk(x)

)(∑
k ′

ak ′Hk ′(x)

)
G (x)dx

=
∞∑
k=0

cosk(θ)a2
k .
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Coefficients

Note that

ak =

∫
R
Hk(x)A(x)dx .

If A(x) and G (x) match first d moments, then for k ≤ d ,

ak =

∫
R
Hk(x)A(x)dx =

∫
R
Hk(x)G (x)dx =

{
1 k = 0

0 k > 0

Also

χ2
G (A,A) + 1 =

∫
R
A(x)2/G (x)dx =

∫
R

∑
k,k ′

akak ′Hk(x)Hk ′(x)G (x)dx

=
∞∑
k=0

a2
k .
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Key Lemma

So

χ2
D(Pu,Pv ) =

∞∑
k=0

cosk(θ)a2
k − 1

=
∞∑

k>d

cosk(θ)a2
k

≤ cosd+1(θ)χ2
G (A,A).

Lemma

If A(x) is a one dimensional distribution whose first d moments agree with
G (x), then for vectors u and v,

|χ2
D(Pu,Pv )| ≤ |u · v |d+1χ2

G (A,A).
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Packing

Have χ2
D(Pu,Pv ) small if u · v is. For lower bound need many distributions

that are pairwise nearly othrogonal.

Lemma

For 1/2 > c > 0, there exists a collection of 2Ω(n1−2c ) unit vectors whose
pairwise dot products are at most n−c .
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Putting it Together

Can find A, ε-close to N(µ, 1) matching first d moments with G with
µ ≥ ε

√
log(1/ε)/poly(d).

Have 2Ω(n1/3) vectors vi with |vi · vj | ≤ n−1/3.

|χ2
D(Pvi ,Pvj )| = O(n−d/3).

The Pvi are ε-corrupted Gaussians with means differing by at least µ.

Theorem

Any SQ algorithm that learns the mean of an ε-corrupted Gaussian to
error better than ε

√
log(1/ε)/M must either make queries with accuracy

n−poly(M) or a number of queries 2n
1/3

.
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Notes

Remark

The lower bound requires both additive and subtractive error. In the
Huber model, can achieve O(ε) error in polynomial time.

Remark

Improvement is tight up to the polynomial in M. There is an algorithm
achieving error O(ε

√
log(1/ε)/M + ε) error in (n/ε)poly(M) time.
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Algorithm

1 Obtain a rough approximation µ̂ to µ.

2 Approximate the higher moment tensors of X .

3 If for any k the kth moments differ too much from those of N(µ̂, I ),
create a filter.

4 Otherwise, only a few directions in which higher moments are
non-trivial. µ is close to sample mean in the trivial directions.

5 Brute force the mean in the non-trivial directions.
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Other Applications

This technique is very general and has a number of other applications for
proving SQ lower bounds in a number of Gaussian-like problems.
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Robust Covariance

We show that it’s hard to robustly learn the covariance to error
o(ε log(1/ε)).

Need one dimensional distribution:

A(x) = G (x/σ) + E (x)

Once again E (x):
I Needs to fix first d moments
I Is supported on an interval of length O(

√
log(1/ε))

I Has L1 norm O(ε).

Needs to fix moments by O(σ − 1), but only needs to fix second on
higher degree moments.

Can do for σ = 1 + Ωd(ε log(1/ε)).
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Result

Theorem

Any SQ algorithm that learns the covariance of an ε-corrupted Gaussian to
error better than εlog(1/ε)/M must either make queries with accuracy

n−poly(M) or a number of queries 2n
1/3

.
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Covariance Sample Complexity

To learn the covariance (even in operator norm) robustly, all known
algorithms require Ω(n2) samples, however information-theoretically, only
O(n) are required.

Can prove SQ lower bound.
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Covariance Sample Complexity

One dimensional version:

A(x) = (1− ε)N(0, 1/2) + (ε/2)N(
√

2/ε, 1/2) + (ε/2)N(−
√

2/ε, 1/2)

Matches 3 moments with N(0, 1).

Have 2n
Ω(1)

vectors vi with pairwise dot products n−0.499. Gives many Pvi

with χ2 at most n−1.99.

Theorem

For ε sufficiently large (a careful analysis allows anything subpolynomial),
any SQ algorithm that learns the covariance of an ε-corrupted Gaussian to
constant error needs either queries of accuracy n−0.99, or 2n

Ω(1)
queries.

Morally, this means we need either n1.99 samples, or exponential time.
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Robust Mean Testing

Problem: Given a distribution X that is either:

1 N(0, I )

2 An ε-corrupted version of N(µ, I ) for some |µ| > δ

Determine with 2/3 probability which case we are in.

Remark

In the noiseless case, this requires only O(
√
n/δ2) samples, which is much

better than the complexity of O(n/δ2) required for learning.
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Lower Bound Framework

If δ = o(ε
√

log(1/ε)), construct moment matching A’s and Pv as before.

Prove information-theoretic lower bounds.

Find collection of vi , make X either N(0, I ) or a random Pvi .

Either see sample from GN or from PN
v∗ (pick random vi and return N

i.i.d samples from Pvi ).
I Can you distinguish GN from PN

v∗?

Enough to show χ2
GN (PN

v∗ ,P
N
v∗) is small.
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Calculation

χ2
GN (PN

v∗ ,P
N
v∗) + 1 = Ei ,j [χ

2
GN (PN

vi
,PN

vj
) + 1]

= Ei ,j [(χ
2
G (Pvi ,Pvj ) + 1)N ]

= Ei ,j [(1 + O(vi · vj)d)N ].

There’s a 1/m probability that i = j and then have 2O(N). Otherwise,
have exp(O((vi · vj)dN)).

Small if:

1 2O(N) � m.

2 (vi · vj)d � 1/N for all i 6= j .
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Result

Can pick m = 2n
0.999

vectors with |vi · vj | < n−Ω(1). Taking d large
enough, N < |vi · vj |−d .

Theorem

Any algorithm to robustly test the mean of a Gaussian for
δ = o(ε

√
log(1/ε)) requires at least n0.99 samples.

DKS (UCSD/USC) SQ Lower Bounds August, 2018 32 / 33



Result

Can pick m = 2n
0.999

vectors with |vi · vj | < n−Ω(1). Taking d large
enough, N < |vi · vj |−d .

Theorem

Any algorithm to robustly test the mean of a Gaussian for
δ = o(ε

√
log(1/ε)) requires at least n0.99 samples.

DKS (UCSD/USC) SQ Lower Bounds August, 2018 32 / 33



Conclusions

We have a general framework for proving computational lower bounds for
Gaussian-ish learning problems that yields near-optimal bounds in a
number of cases.
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