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Sample Complexity

Ilias described how the filter and convex programming methods work with
infinitely many samples. Here we will discuss how to get the details of the
analysis correct for finitely many samples, and how to optimize the sample
complexity in the analysis.
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Setup

We assume that we are trying to robustly learn a Gaussian
G = N(µ, I ) ⊂ Rn.

For simplicity, we assume µ = 0 (as everything we do is translation
invariant).
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Convex Program, Basic Conditions

Minimally, for the convex program to work, we need our set S of N
unbiased samples to satisfy: ∣∣∣∣∣ 1

N

∑
X∈S

X

∣∣∣∣∣ ≤ ε
and ∣∣∣∣∣ 1

N

∑
X∈S

XXT − I

∣∣∣∣∣
2

≤ ε
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Mean

Note that
1

N

∑
X∈S

X ∼ N(0, I/
√
N).

So n/ε2 samples suffice to ensure that it has norm less than ε.
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Covariance

Note that ∣∣∣∣∣ 1

N

∑
X∈S

XXT − I

∣∣∣∣∣
2

= sup
|v |2=1

∣∣∣∣∣ 1

N

∑
X∈S

[(v · X )2 − 1]

∣∣∣∣∣ .

Need to show that this is small for all v .

Could do if finitely many.
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Covers

There exists a cover C of the unit sphere with:

|C | = 2O(n).

For all |v |2 = 1, there is a w ∈ C so that v · w ≥ 9/10.

For any symmetric A, there is a w ∈ C with |wTAw | ≥ |A|2/2.

Enough to apply union bound over C .
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Concentration

For each w ∈ C need with high probability that∣∣∣∣∣∑
X∈S

(w · X )2 − 1

∣∣∣∣∣ ≤ Nε/2.

Probability of failure

E

[
exp

(
±t
∑
X∈S

(w · X )2 − 1

)]
e−Ntε/2

=E
[
exp(±t(G 2 − 1))

]N
e−Ntε/2

= exp(N(O(t2)− tε/2)).

Setting t to be a sufficiently small multiple of ε, this is exp(−Ω(Nε2)), so
N = O(n/ε2) suffices.

D. Kane (UCSD) Sample Complexity August, 2018 9 / 22



Concentration

For each w ∈ C need with high probability that∣∣∣∣∣∑
X∈S

(w · X )2 − 1

∣∣∣∣∣ ≤ Nε/2.

Probability of failure

E

[
exp

(
±t
∑
X∈S

(w · X )2 − 1

)]
e−Ntε/2

=E
[
exp(±t(G 2 − 1))

]N
e−Ntε/2

= exp(N(O(t2)− tε/2)).

Setting t to be a sufficiently small multiple of ε, this is exp(−Ω(Nε2)), so
N = O(n/ε2) suffices.

D. Kane (UCSD) Sample Complexity August, 2018 9 / 22



Concentration

For each w ∈ C need with high probability that∣∣∣∣∣∑
X∈S

(w · X )2 − 1

∣∣∣∣∣ ≤ Nε/2.

Probability of failure

E

[
exp

(
±t
∑
X∈S

(w · X )2 − 1

)]
e−Ntε/2

=E
[
exp(±t(G 2 − 1))

]N
e−Ntε/2

= exp(N(O(t2)− tε/2)).

Setting t to be a sufficiently small multiple of ε, this is exp(−Ω(Nε2)), so
N = O(n/ε2) suffices.

D. Kane (UCSD) Sample Complexity August, 2018 9 / 22



Subset Bounds

For the analysis to work also need for any weight function
0 ≤ wx ≤ 1/(1− 2ε),

∑
x∈S wx = 1 that∣∣∣∣∣∑
X∈S

wXX

∣∣∣∣∣� ε
√

log(1/ε)

and ∣∣∣∣∣∑
X∈S

wXXX
T − I

∣∣∣∣∣
2

� ε log(1/ε).
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Simplifications

Enough to check for w the indicator of any subset of S of size N(1− 2ε).

Enough to show that whp over each v ∈ C and S ′ ⊂ S not too small,∣∣∣∣∣∑
X∈S ′

v · X

∣∣∣∣∣� ε
√

log(1/ε)N

and ∣∣∣∣∣∑
X∈S ′

(v · X )2 − 1

∣∣∣∣∣� ε log(1/ε)N.

Assuming that the sum over all of S is good, suffices to show that the
sums over S\S ′ are bounded.
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Mean Bound
Need to bound ∣∣∣∣∣∣

∑
X∈S\S ′

v · X

∣∣∣∣∣∣ .

At most
O(ε

√
log(1/ε)N) +

∑
X∈S ,|v ·X |≥10

√
log(1/ε)

|v · X |.

E

exp

 ∑
X∈S,|v ·X |≥10

√
log(1/ε)

|v · X |




=EY∼N(0,1)[exp(1|Y |≥10
√

log(1/ε)
|Y |)]N

≤(1 + ε2)N .

The probability of being too big is exp(−Ω(ε
√

log(1/ε)N)), so N = n/ε2

suffices.
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Covariance Bound
Need to bound ∣∣∣∣∣∣

∑
X∈S\S ′

(v · X )2 − 1

∣∣∣∣∣∣ .

At most
O(εlog(1/ε)N) +

∑
X∈S,|v ·X |≥10

√
log(1/ε)

|v · X |2.

E

exp

 ∑
X∈S,|v ·X |≥10

√
log(1/ε)

|v · X |2/10




=EY∼N(0,1)[exp(1|Y |≥10
√

log(1/ε)
|Y |2/10)]N

≤(1 + ε2)N .

The probability of being too big is exp(−Ω(εlog(1/ε)N)), so N = n/ε2
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Summary

So the conditions needed for the convex program hold with high
probability so long as N � n/ε2.
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Filter: Naive Analysis

If the bad points are coming i.i.d. from some distribution X , there is an
easy analysis that uses separate samples for each filter step.

1 Find a rough approximation to µ.

2 Throw out samples 10
√
n far from µ (an exponentially small fraction

of good samples).

3 Take samples, and compute empirical covariance.

4 If no large eigenvalues, return sample mean.

5 If large eigenvalue v , use samples to approximate the distribution
v · X and find a threshold for a filter.

6 Return to step 3, applying the filter to all future samples.
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Sample Complexity

By Chernoff Bounds, O(n2/ε2) samples suffice to ensure good
approximations to mean and covariance.

O(n/ε2) samples suffices to approximate cumulative density
distribution of v · X to error ε/

√
n.

Need to take this many samples every round.
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Good Sets

If you want to reuse the same samples between rounds or work against
stronger error models, need to have a condition on the set of uncorrupted
samples that implies the algorithm will work.

A good set of samples S should:

Have appropriate mean and covariance even when restricting to
(1− ε)-dense subsets.

Not loose too many points to filters.

Have a set of N i.i.d. points of G be good with high probability.
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Analysis Template

Assume S is a good set. Let D(S ,S ′) = |S∆S ′|/|S |.

Want a procedure that given S ′ with D(S ,S ′) ≤ 2ε for a good set S
either:

Returns a µ̃ with |µ− µ̃| = O(ε
√

log(1/ε)).

OR returns an S ′′ with D(S ,S ′′) < D(S ,S ′).
I Usually S ′′ ⊂ S ′ and less than half of the elements of S ′\S ′′ are in S .

Iterating procedure eventually returns a valid approximation.
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Basic Analysis

The existing conditions ensure that if Cov(S ′) ≤ I (1 + O(ε log(1/ε))),
then we get a good approximation to the mean.

Otherwise, if v is an eigenvector with eigenvalue 1 + δ, can approximate
v · µ to error O(1) (by taking a median), and can find a threshold T
beyond which there are more points than there should be. Need S to not
have too many points beyond this threshold.
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Samples

If we threw out points more than 10
√
n from µ, can find T so that

PrY∈uS ′(v · Y ≥ T ) ≥ 2Pr(v · G ≥ T ) + (ε/n).

It is enough to have

PrX∈uS(v · X ≥ T ) = Pr(v · G ≥ T ) + O(ε/n).

for every v ,T .

The set of halfspaces as test has VC-dimension n, and so by the
VC-inequality, this happens whp when N � n3/ε2.
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Improved Sample Complexity
This analysis requires many samples in order to get such precise control
over the tail bounds. If we filter in a more relaxed manner, we can get by
with weaker bounds.

If an ε-fraction of errors increases the variance in the v -direction by much
more than ε log(1/ε), then∑

X∈S ′\S ,|v ·(X−µ)|>10
√

log(1/ε)

|v · (X − µ)|2 � ε log(1/ε)|S |.

We note that this is much more than this sum should be over good
samples. So if ∑

X∈S ,|v ·(X−µ)|>10
√

log(1/ε)

|v · (X − µ)|2 � ε log(1/ε)|S |.

we can filter by throwing away X with |v · (X − µ̃)| > 10
√

log(1/ε) with
probability proportional to |v · (X − µ)|2.

D. Kane (UCSD) Sample Complexity August, 2018 21 / 22



Improved Sample Complexity
This analysis requires many samples in order to get such precise control
over the tail bounds. If we filter in a more relaxed manner, we can get by
with weaker bounds.

If an ε-fraction of errors increases the variance in the v -direction by much
more than ε log(1/ε), then∑

X∈S ′\S ,|v ·(X−µ)|>10
√

log(1/ε)

|v · (X − µ)|2 � ε log(1/ε)|S |.

We note that this is much more than this sum should be over good
samples. So if ∑

X∈S ,|v ·(X−µ)|>10
√

log(1/ε)

|v · (X − µ)|2 � ε log(1/ε)|S |.

we can filter by throwing away X with |v · (X − µ̃)| > 10
√

log(1/ε) with
probability proportional to |v · (X − µ)|2.

D. Kane (UCSD) Sample Complexity August, 2018 21 / 22



Improved Sample Complexity
This analysis requires many samples in order to get such precise control
over the tail bounds. If we filter in a more relaxed manner, we can get by
with weaker bounds.

If an ε-fraction of errors increases the variance in the v -direction by much
more than ε log(1/ε), then∑

X∈S ′\S ,|v ·(X−µ)|>10
√

log(1/ε)

|v · (X − µ)|2 � ε log(1/ε)|S |.

We note that this is much more than this sum should be over good
samples. So if ∑

X∈S ,|v ·(X−µ)|>10
√

log(1/ε)

|v · (X − µ)|2 � ε log(1/ε)|S |.

we can filter by throwing away X with |v · (X − µ̃)| > 10
√

log(1/ε) with
probability proportional to |v · (X − µ)|2.

D. Kane (UCSD) Sample Complexity August, 2018 21 / 22



Improved Sample Complexity

By the bound shown before, if N � n/ε2, this happens with high
probability for all w ∈ C . It is not hard to modify to work for all v .

Upshot: With this filtering method O(n/ε2) samples suffices.
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