Sum-of-Squares Approach for Robust Mean Estimation

Pravesh Kothari

Princeton/IAS

Sum-of-Squares Approach for

Parameter Estimation Problems

Pravesh Kothari

Princeton/IAS

Based on joint works with Adam Klivans, Raghu Meka, David Steurer and Jacob Steinhardt.

Machine Learning

DATA

STRUCTURE

- documents
- music
- social network

Learning

- topics
- genres
- communities



Machine Learning

mixture models, topic models, independent component analysis, principal component analysis, compressive sensing, matrix completion, regression, *robust* versions,...

Machine Learning

Cryptography security of pseudorandom generators,...

DATA

 $x_1, x_2, \ldots, x_m \in \mathbb{R}^d$

"estimation"

 $\Theta \in \mathbb{R}^p$

STRUCTURE

Machine Learning

Cryptography

avg-case complexity planted clique, refuting random CSPs,...

SAMPLE COMPLEXITY

how much data is required for recovering Θ ?

COMPUTATIONAL COMPLEXITY

is there an efficient algorithm for recovering Θ ?

C

ca

SUM-OF-SQUARES METHOD

a unified approach for parameter estimation

SoS for Parameter Estimation

ROBUST STATISTICS

MOMENT ESTIMATION [K-Steurer'18]

CLUSTERING MIXTURE MODELS [Hopkins-Li'18], [K-Steinhardt'18]

REGRESSION [Klivans-K-Meka'18]

SPARSE RECOVERY [Klivans-Karmalkar-K'18]

SoS for Parameter Estimation

MACHINE LEARNING

MOMENT ESTIMATION [K-Steurer'18]

DICTIONARY LEARNING

CLUSTERING MIXTURE MODELS [Hopkins-Li'18], [K-Steinhardt'18]

REGRESSION [Klivans-K-Meka'18]

SPARSE RECOVERY [Klivans-Karmalkar-K'18]

TENSOR COMPLETION [Barak-Moitra'15, Potechin-Steurer'16]

TENSOR PCA [Hopkins-Shi-Steurer'15]

TENSOR DECOMPOSITION [Barak-Kelner-Steurer'14, Ge-Ma'15,

Ma-Shi-Steurer'16,]

SoS for Parameter Estimation

MACHINE LEARNING

MOMENT ESTIMATION [K-Steurer'18]

CLUSTERING MIXTURE MODELS [Hopkins-Li'18], [K-Steinhardt'18]

REGRESSION [Klivans-K-Meka'18]

SPARSE RECOVERY [Klivans-Karmalkar-K'18]

TENSOR COMPLETION [Barak-Moitra'15, Potechin-Steurer'16]

TENSOR PCA [Hopkins

TENSOR DECOMPOSITION

DICTIONARY LEARNING

[Hopkins-Shi-Steurer'15]

[Barak-Kelner-Steurer'14, Ge-Ma'15,

Ma-Shi-Steurer'16,]

COMP. VS STAT. COMPLEXITY GAPS

RANDOM CSPS

[Allen-O'Donnell-Witmer'15,

[Barak-Chan-K'15]

[K-Mori-O'Donnell-Witmer'17]

PLANTED CLIQUE

[Barak-Hopkins-Kelner-**K-**Moitra-Potechin'16]

SPARSE PCA

[Hopkins-K-Potechin-Raghavendra-

TENSOR PCA

Schramm-Steurer'17]

Know Thy Hammer

Upshots

• Single blueprint for parameter estimation. "identifiability to algorithm"

• general tools to prove optimal lower bounds "comp. vs stat. gaps"

Downsides

theoretically efficient, practically slow

"hammer not a scalpel"

can extract fast practical algorithms sometimes

[Hopkins-Schramm-Shi-Steurer'16],...

ask Sam!

Know Thy Hammer

Upshots

• Single blueprint for parameter estimation. "identifiability to algorithm"

• general tools to prove optimal lower bounds "comp. vs stat. gaps"

Downsides

• theoretically efficient, practically slow "hammer not a scalpel"

can extract fast practical algorithms sometimes

Our Goal

- understand algorithmically exploitable structure in the problem
- uncover fundamental tradeoffs/barriers.

Illustrate Sum-of-Squares Method for Parameter Estimation

Parameter Estimation Via SoS

Example: Robust Moment Estimation [K-Steurer'18]

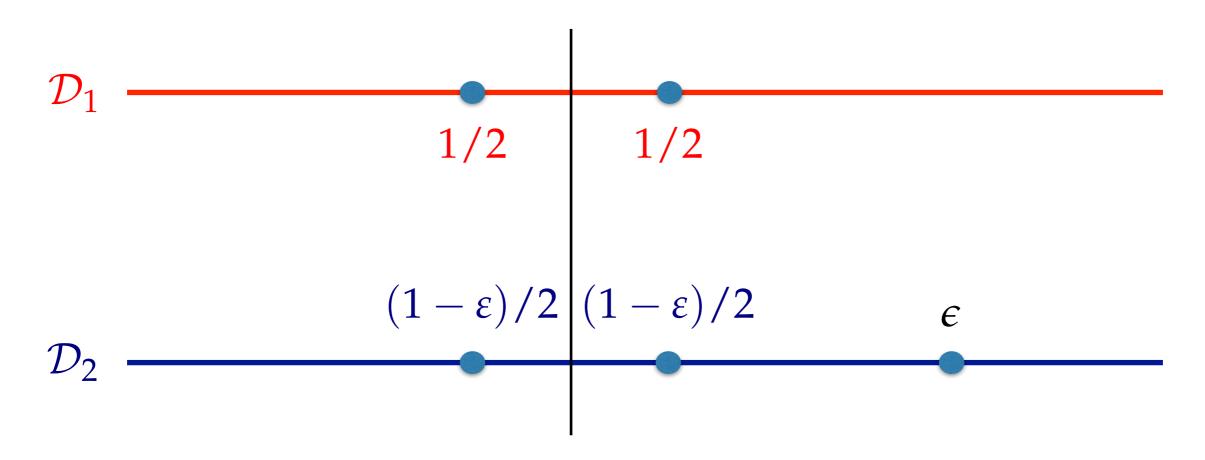
focus on *mean* estimation

Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, ..., y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Is robust mean estimation possible?



Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, ..., y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Is robust mean estimation possible?

- cannot tell apart distributions ε -close in stat. distance.
- ε-close distributions can have *arbitrarily* differing means.

so info. theoretically impossible in general.

Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, ..., y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Is robust mean estimation possible?

What we'll do:

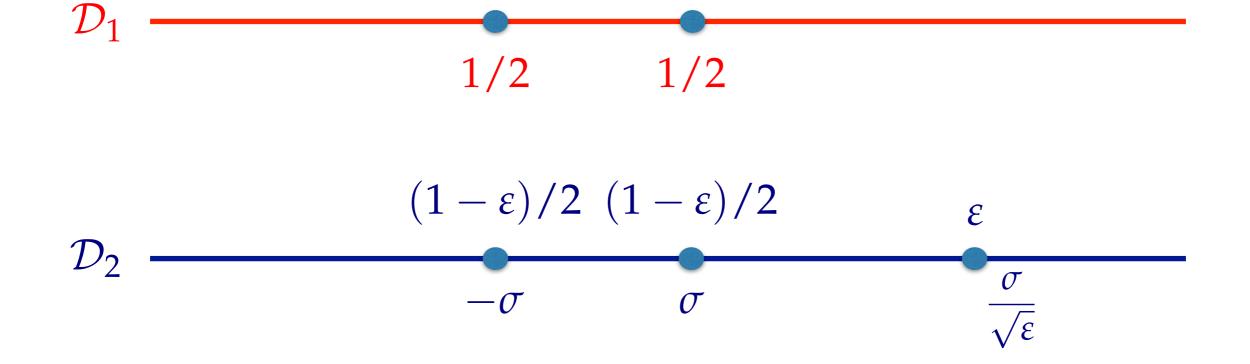
assume that \mathcal{D} comes from a reasonable family where *tails do not strongly control the mean*.

Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, ..., y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Bounded Variance means are $\sim \sigma \sqrt{\epsilon}$ apart.



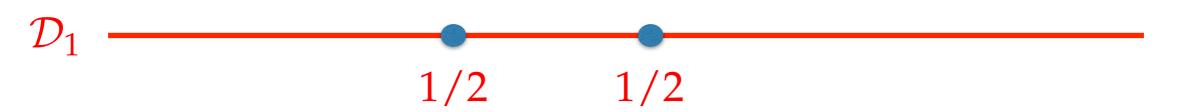
Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, ..., y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Bounded 2k-moments means are $\sim \sigma \epsilon^{1-1/k}$ apart.

$$\mathbb{E}(x-\mu)^{2k} \le (Ck)^k (\mathbb{E}(x-\mu)^2)^k$$



$$\mathcal{D}_{2} = \frac{(1-\varepsilon)/2 \quad (1-\varepsilon)/2}{-\sigma \quad \sigma} \frac{\varepsilon}{\sigma \varepsilon^{-1/k}}$$

Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, ..., y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

high dimensional setting

Bounded Moment Distributions

 \mathcal{D} has **C**-bounded **2k**-moments, if for every $u \in \mathbb{R}^d$

$$\mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2k} \le (C \cdot k \cdot \mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2})^{k}$$

Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, ..., y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

high dimensional setting

Bounded Moment Distributions

 \mathcal{D} has **C**-bounded **2k**-moments, if for every $u \in \mathbb{R}^d$

$$\mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2k} \le (C \cdot k \cdot \mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2})^{k}$$

Natural families are bounded for all k.

2k-wise Product Distributions, Sub-gaussian/Sub-exp Families,...

Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, \dots, y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

A flurry of activity starting with the pioneering papers of [Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16] [Lai-Rao-Vempala'16]

Setting: unknown distribution \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, \dots, y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

A flurry of activity starting with the pioneering papers of [Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16] [Lai-Rao-Vempala'16]

will skip a detailed survey and instead give you punchlines. focus on estimation error for a given dist. family.

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
 optimal!

[Lai-Rao-Vempala'16]

[Charikar-Steinhardt-Valiant'17]

[Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'17]

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
 optimal!
Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ ~optimal!

[Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16]

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

For covariance estimation, optimal results only for gaussians.

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

Bounded 2k-Moments

relates to the hardness of UG/SSE.

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

Certified Bounded 2k-Moments

"higher-moment information is algorithmically accessible"

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

Certified Bounded 2k-Moments

Examples

- Gaussians, product distributions on discrete hypercube,...
- k-wise product distributions
- Distributions satisfying **Poincaré** inequality [K-Steinhardt'17] includes all *strongly log-concave* distributions

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

Certified Bounded 2k-Moments

[K-Steurer'18]
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1-\frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time $d^{O(k)}$ optimal!

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

Certified Bounded 2k-Moments

[K-Steurer'18]
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1 - \frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time $d^{O(k)}$

via the SoS method.

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

Certified Bounded 2k-Moments

[K-Steurer'18]
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1 - \frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time $d^{O(k)}$

optimal results for covariance and higher moment estimation!

Corollary "outlier-robust method of moments" [Pearson'94],...,[Kalai-Moitra-Valiant'10,Belkin-Sinha'10],...

- Robust Independent Component Analysis.
- Robust Learning of Mixture of Gaussians for linearly indep. means.

Quick summary of what's known

Bounded Covariance
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$

Gaussians $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$

Certified Bounded 2k-Moments

[K-Steurer'18]
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1 - \frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time $d^{O(k)}$

conceptual power of SoS in robust estimation

- allows algorithmically using higher moment information in data.
- key to improved algorithms for clustering mixture models.

Our Goal Today

One algorithm to robustly estimate them all...

unified conceptual blueprint, simple proofs.

don't try this on your personal computers yet.

Setting: unknown \mathcal{D} on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ and cov. Σ $X = \{x_1, x_2, \dots, x_m\}$ i.i.d. sample from \mathcal{D}

Input: $Y = \{y_1, y_2, \dots, y_m\}$ ε -corruption of X. $y_i = x_i$ for $(1 - \varepsilon)m$ indices i

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* identifies* μ up to a small error.

Step 2: Algorithm Design An efficient algorithm to find $\hat{\mu}$.

Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* **identifies*** μ up to a small error.

- = a test that only approx. true parameters can pass.
- = a *certificate* that a purported solution is **correct**.

what Ilias showed you in the first part today!

Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

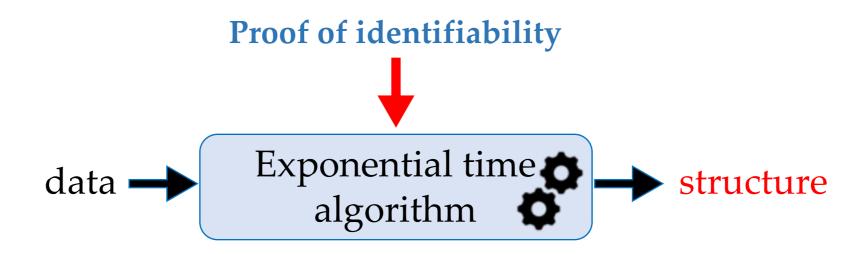
Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* identifies* μ up to a small error.

- = a test that only approx. true parameters can pass.
- = a *certificate* that a purported solution is correct.

determines *sample complexity*. Implies that brute-force succeeds.



Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* identifies* μ up to a small error.

I'm going to show you a magical world where "P = NP"!

Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

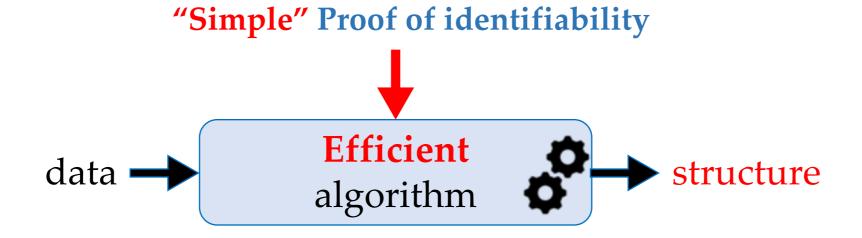
Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* **identifies*** μ up to a small error.

simple (low degree SoS) proof of identifiability = efficient algorithm.



Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

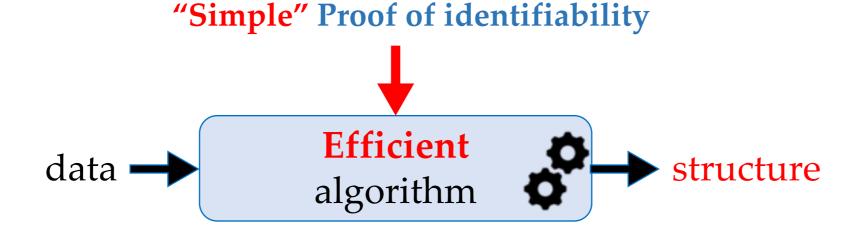
Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* identifies* μ up to a small error.

simple (low degree SoS) proof of identifiability = efficient algorithm.

Luckily, our proofs are often simple without additional effort!



Input: $Y = \{y_1, y_2, \dots, y_m\}$ *\varepsilon*-corruption of $X \sim \mathcal{D}^m$ with μ, Σ

Goal: Compute $\hat{\mu} \in \mathbb{R}^d$ so that $\|\mu - \hat{\mu}\|_2$ is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* identifies* μ up to a small error.

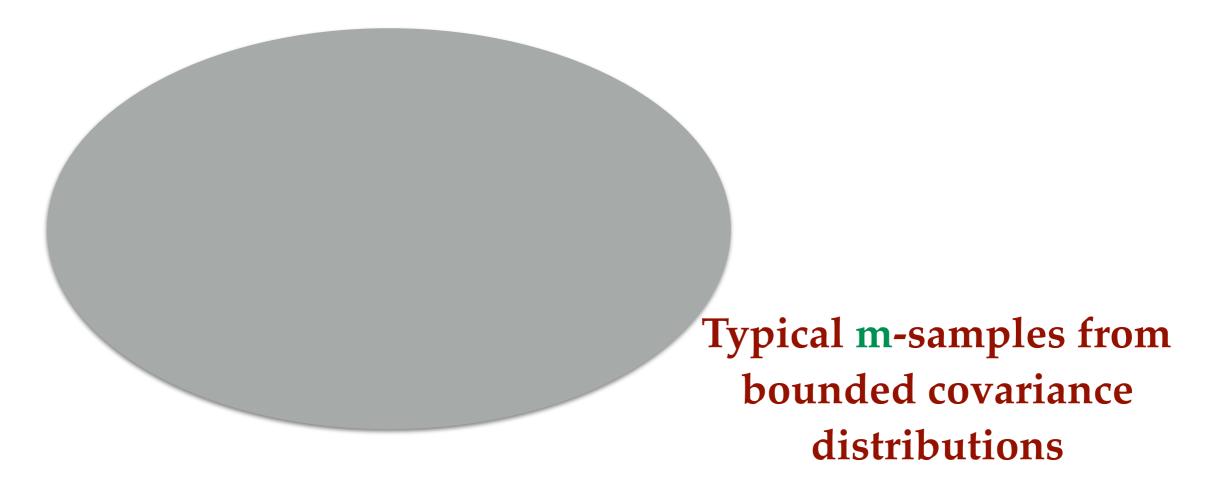
DONE! [Barak-Kelner-Steurer'15],...

Step 2 is problem independent!

Step 2: Algorithm Design
An efficient algorithm to find $\hat{\mu}$.

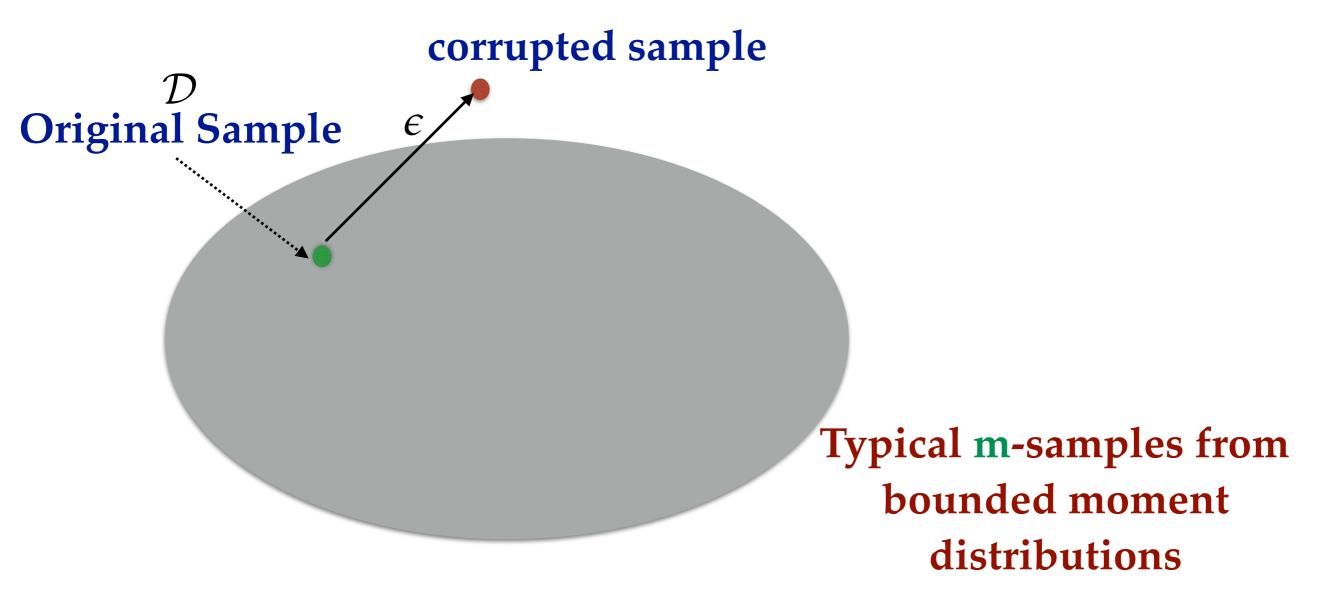
Why does a corrupted sample uniquely* determine the mean?

Why does a corrupted sample uniquely* determine the mean?



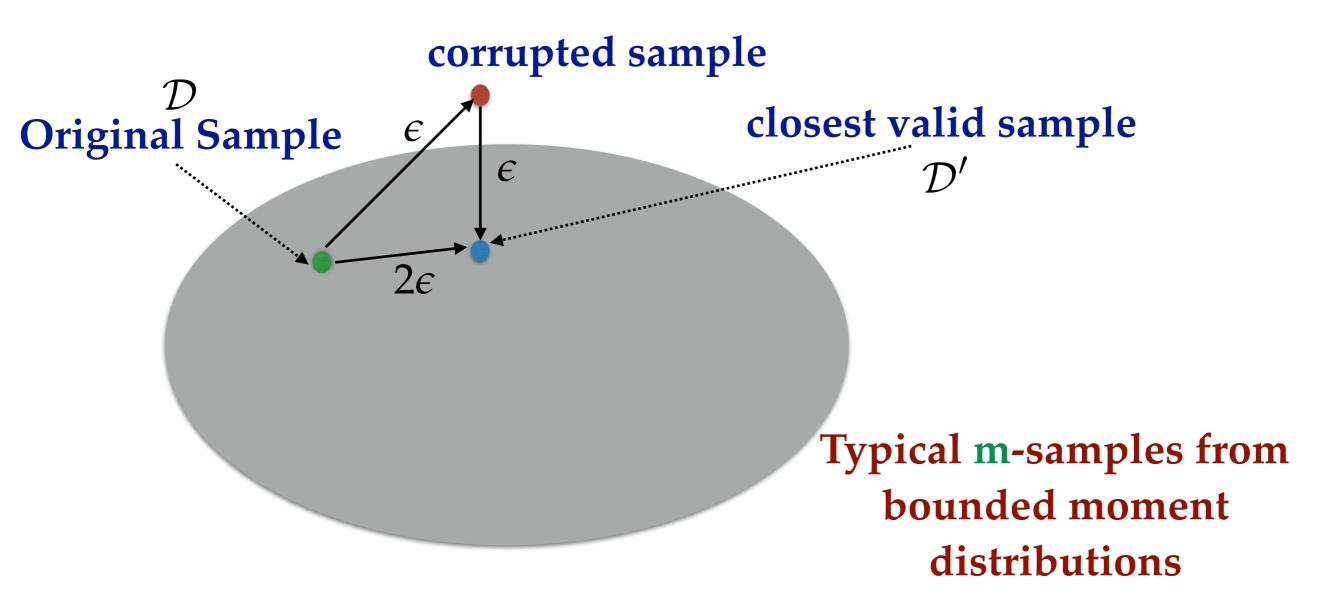
If $m \approx d/\epsilon^2$, the uniform distribution on the **sample** satisfies the bounded variance property whp.

Why does a corrupted sample uniquely* determine the mean?



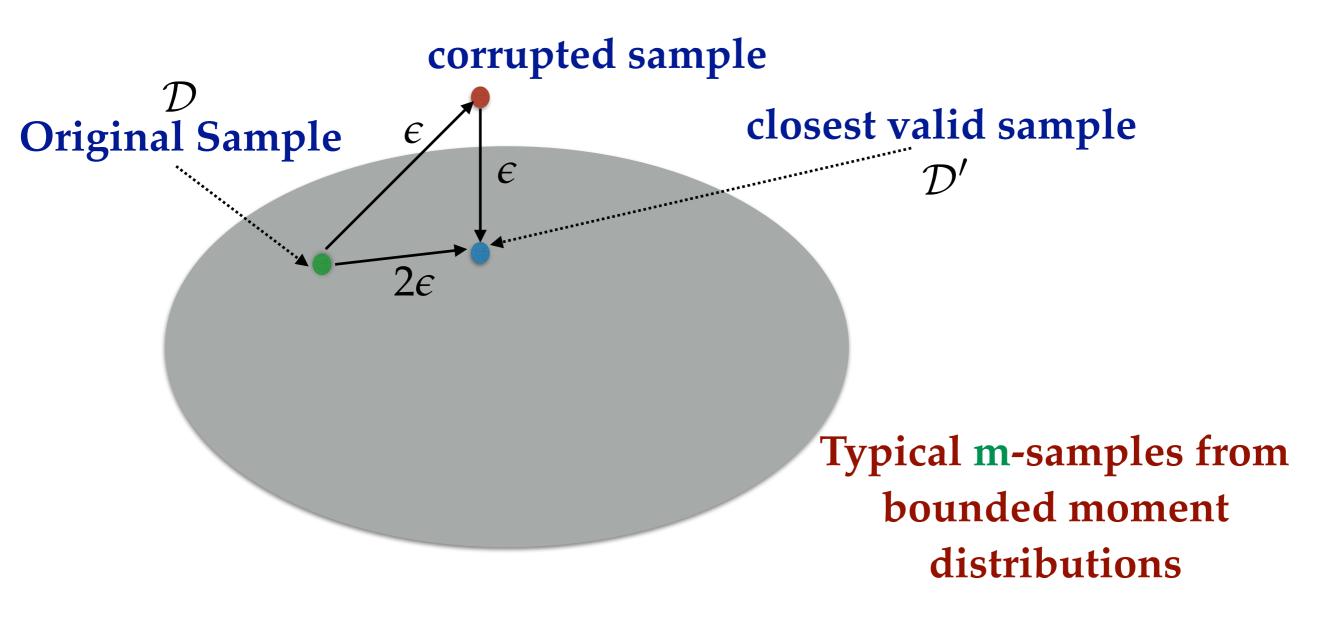
If $m \approx d/\epsilon^2$, the uniform distribution on the **sample** satisfies the bounded variance property whp.

Why does a corrupted sample uniquely* determine the mean?



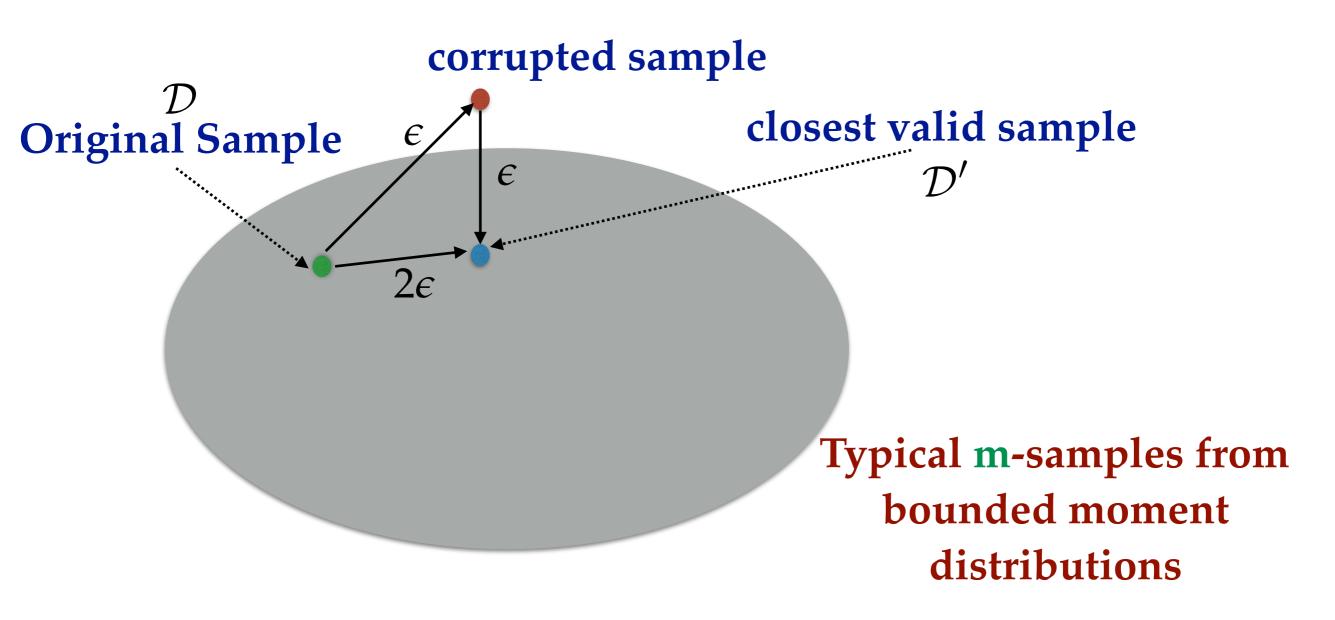
If $m \approx d/\epsilon^2$, the uniform distribution on the **sample** satisfies the bounded variance property whp.

Why does a corrupted sample uniquely* determine the mean?



"Unique Decodability"

Why does a corrupted sample uniquely* determine the mean?



Why do nearby samples have close parameters?

Why does a corrupted sample uniquely* determine the mean?

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that: $\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9$. Then, $\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'})$

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Soon we will obtain better guarantees under bounded moment assumptions.

Why does a corrupted sample uniquely* determine the mean?

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{ . Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_{X'}^2 = \|\Sigma(X')\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Inefficient Algorithm

- 1. Find an ϵ -close sample that has the smallest covariance
- 2. Return its mean.

In 1-D, corresponds to modifying the largest/smallest points.

~ median

Thank you for your attention!

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

- 1) \mathcal{U}_X and $\mathcal{U}_{X'}$ have 1-bounded 4th moments, and
- 2) $\Pr_{i \in [n]} \{ x_i \neq x_i' \} = \epsilon < 0.9$. Then, $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$ $\|\sigma_X^2 = \|\Sigma(X)\|$

$$|\mu(X) - \mu(X')| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Coming up...

Automatically translate "simple" *identifiability* proofs into algorithms! What does simple mean?

captured in the sum of squares proof system

- A proof system that reasons about polynomial inequalities
- Degree t proofs can be found in time $d^{O(t)}$
- Many natural inequalities have low-degree SoS proofs Holder's, Cauchy-Schwarz, Triangle Inequality, Brascamp-Lieb inequalities...

growing general toolkit for ready to use SoS facts*!

*See notes at <u>sumofsquares.org</u>

Why does a corrupted sample uniquely* determine the mean?

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{. Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_{X'}^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Proof By Cauchy-Schwarz

$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle = \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

$$\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\})\right)^{1/2} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle\right)^{1/2}$$

Why does a corrupted sample uniquely* determine the mean?

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{. Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Proof By Cauchy-Schwarz

$$\frac{1}{n} \sum_{i} \langle u, x_{i} - x'_{i} \rangle = \frac{1}{n} \sum_{i} \mathbb{1}(\{x_{i} \neq x'_{i}\}) \cdot \langle u, x_{i} - x'_{i} \rangle$$

$$\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_{i} \neq x'_{i}\})\right)^{1/2} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_{i} - x'_{i} \rangle\right)^{1/2}$$

$$\leq \epsilon^{1/2} \cdot (\mathbb{E}_{i} \langle u, x_{i} - \mu(X) \rangle) + (\langle u, x'_{i} - \mu(X')) + \langle u, \mu(X) - \mu(X') \rangle)^{1/2}$$

Why does a corrupted sample uniquely* determine the mean?

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{. Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_{X'}^2 = \|\Sigma(X')\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Proof By Cauchy-Schwarz

$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle = \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

$$\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\})\right)^{1/2} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle\right)^{1/2}$$

$$\leq O(\epsilon^{1/2})(\sigma_X + \sigma_{X'} + |\langle u, \mu(X) - \mu(X') \rangle|^{1/2})$$

Rearrange to get the lemma!

Algorithm from Identifiability

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{ . Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

SDP relaxation for the following quadratic program works!

Input $\{y_1, y_2, \dots, y_n\}$ ϵ -corrupted sample.

Variables/Constraints

 $X' = \{x'_1, x'_2, \dots, x'_n\}$ a guess for original sample. A coupling w.

$$w_i^2 = w_i \quad w_i(y_i - x_i') = 0 \quad \forall i \quad \sum_i w_i = (1 - \epsilon)n$$

Minimize $\|\Sigma(X')\|$

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

- 1) \mathcal{U}_X and $\mathcal{U}_{X'}$ have 1-bounded 4th moments, and
- 2) $\Pr_{i \in [n]} \{ x_i \neq x_i' \} = \epsilon < 0.9$. Then, $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$ $\|\sigma_X^2 = \|\Sigma(X)\|$

$$|\mu(X) - \mu(X')| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

Proof
$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle \le \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

Holder $\le \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}^{4/3})\right)^{3/4} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle^4\right)^{1/4}$

Lemma (Identifiability)

Let $X = \{x_1, x_2, ..., x_n\}$ and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

1) \mathcal{U}_X and $\mathcal{U}_{X'}$ have 1-bounded 4th moments, and

1)
$$\omega_X$$
 and $\omega_{X'}$ have 1-bounded 4th moments, and 2) $\Pr_{i \in [n]} \{x_i \neq x_i'\} = \epsilon < 0.9$. Then, $\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$ $\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

Proof
$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle \leq \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

Holder $\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}^{4/3})\right)^{3/4} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle^4\right)^{1/4}$
 $\leq O(\epsilon^{3/4}) \left(\left(\mathbb{E}_i \langle u, x_i - \mu(X) \rangle^4\right)^{1/4} + \left(\mathbb{E}_i \langle u, x_i' - \mu(X') \rangle^4\right)^{1/4} + \left(\langle u, \mu(X) - \mu(X') \rangle^4\right)^{1/4}\right)$

Lemma (Identifiability)

Let $X = \{x_1, x_2, ..., x_n\}$ and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

- 1) \mathcal{U}_X and $\mathcal{U}_{X'}$ have 1-bounded 4th moments, and
- 2) $\Pr_{i \in [n]} \{ x_i \neq x_i' \} = \epsilon < 0.9$. Then, $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$ $\|\sigma_X^2 = \|\Sigma(X)\|$

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

Proof
$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle \leq \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

Holder
$$\leq \left(\frac{1}{n}\sum_{i}\mathbb{1}(\{x_i \neq x_i'\}^{4/3})\right)^{3/4} \cdot \left(\frac{1}{n}\sum_{i}\langle u, x_i - x_i'\rangle^4\right)^{1/4}$$

certified bounded
$$\leq O(\epsilon^{3/4}) \left(\sigma_X + \sigma_{X'} + |\langle u, \mu(X) - \mu(X') \rangle|\right)$$
 moment property

Rearrange!

Lemma (Identifiability)

Let
$$X = \{x_1, x_2, ..., x_n\}$$
 and $X' = \{x'_1, x'_2, ..., x'_n\}$ be such that:

- 1) \mathcal{U}_X and $\mathcal{U}_{X'}$ have 1-bounded 4th moments, and
- 2) $\Pr_{i \in [n]} \{x_i \neq x_i'\} = \epsilon < 0.9$. Then, $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$ $\|\sigma_X^2 = \|\Sigma(X)\|$

$$|\mu(X) - \mu(X')| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Again yields a simple SDP* relaxation as before!

*some care to have a constraint for "bounded moment property"