# Sum-of-Squares Approach for Robust Mean Estimation

Pravesh Kothari

Princeton/IAS

# Sum-of-Squares Approach for

## Parameter Estimation Problems

**Pravesh Kothari** 

Princeton/IAS

Based on joint works with Adam Klivans, Raghu Meka, David Steurer and Jacob Steinhardt.

# Machine Learning



DATA



STRUCTURE

- documents
- music
- social network

Learning

- topics
- genres
- communities





### **Machine Learning**

mixture models, topic models, independent component analysis, principal component analysis, compressive sensing, matrix completion, regression, *robust* versions,...



### **Machine Learning**

Cryptography security of pseudorandom generators,...





DATA

 $x_1, x_2, \ldots, x_m \in \mathbb{R}^d$ 

"estimation"

 $\Theta \in \mathbb{R}^p$ 

STRUCTURE

**Machine Learning** 

Cryptography

avg-case complexity planted clique, refuting random CSPs,...



### SAMPLE COMPLEXITY

how much data is required for recovering  $\Theta$ ?

### COMPUTATIONAL COMPLEXITY

is there an efficient algorithm for recovering  $\Theta$ ?

C

ca

### SUM-OF-SQUARES METHOD

a unified approach for parameter estimation

# SoS for Parameter Estimation

### ROBUST STATISTICS

MOMENT ESTIMATION [K-Steurer'18]

CLUSTERING MIXTURE MODELS [Hopkins-Li'18], [K-Steinhardt'18]

**REGRESSION** [Klivans-K-Meka'18]

SPARSE RECOVERY [Klivans-Karmalkar-K'18]



# SoS for Parameter Estimation

### MACHINE LEARNING

MOMENT ESTIMATION [K-Steurer'18]

**DICTIONARY LEARNING** 

CLUSTERING MIXTURE MODELS [Hopkins-Li'18], [K-Steinhardt'18]

**REGRESSION** [Klivans-K-Meka'18]

SPARSE RECOVERY [Klivans-Karmalkar-K'18]

**TENSOR COMPLETION** [Barak-Moitra'15, Potechin-Steurer'16]

TENSOR PCA [Hopkins-Shi-Steurer'15]

TENSOR DECOMPOSITION [Barak-Kelner-Steurer'14, Ge-Ma'15,

Ma-Shi-Steurer'16,]

# SoS for Parameter Estimation

### MACHINE LEARNING

MOMENT ESTIMATION [K-Steurer'18]

CLUSTERING MIXTURE MODELS [Hopkins-Li'18], [K-Steinhardt'18]

**REGRESSION** [Klivans-K-Meka'18]

SPARSE RECOVERY [Klivans-Karmalkar-K'18]

**TENSOR COMPLETION** [Barak-Moitra'15, Potechin-Steurer'16]

TENSOR PCA [Hopkins

TENSOR DECOMPOSITION

**DICTIONARY LEARNING** 

[Hopkins-Shi-Steurer'15]

[Barak-Kelner-Steurer'14, Ge-Ma'15,

Ma-Shi-Steurer'16,]

### COMP. VS STAT. COMPLEXITY GAPS

**RANDOM CSPS** 

[Allen-O'Donnell-Witmer'15,

[Barak-Chan-K'15]

[K-Mori-O'Donnell-Witmer'17]

PLANTED CLIQUE

[Barak-Hopkins-Kelner-**K-**Moitra-Potechin'16]

**SPARSE PCA** 

[Hopkins-K-Potechin-Raghavendra-

**TENSOR PCA** 

Schramm-Steurer'17]

# **Know Thy Hammer**

### **Upshots**

• Single blueprint for parameter estimation. "identifiability to algorithm"



• general tools to prove optimal lower bounds "comp. vs stat. gaps"

### **Downsides**

theoretically efficient, practically slow

"hammer not a scalpel"

can extract fast practical algorithms sometimes

[Hopkins-Schramm-Shi-Steurer'16],...

ask Sam!

# **Know Thy Hammer**

### **Upshots**

• Single blueprint for parameter estimation. "identifiability to algorithm"



• general tools to prove optimal lower bounds "comp. vs stat. gaps"

### **Downsides**

• theoretically efficient, practically slow "hammer not a scalpel"

can extract fast practical algorithms sometimes

### **Our Goal**

- understand algorithmically exploitable structure in the problem
- uncover fundamental tradeoffs/barriers.

### Illustrate Sum-of-Squares Method for Parameter Estimation

### Parameter Estimation Via SoS



**Example:** Robust Moment Estimation [K-Steurer'18]

focus on *mean* estimation

**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

Input:  $Y = \{y_1, y_2, ..., y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Is robust mean estimation possible?



**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, ..., y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

### Is robust mean estimation possible?

- cannot tell apart distributions  $\varepsilon$ -close in stat. distance.
- ε-close distributions can have *arbitrarily* differing means.

so info. theoretically impossible in general.

**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, ..., y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

### Is robust mean estimation possible?

What we'll do:

assume that  $\mathcal{D}$  comes from a reasonable family where *tails do not strongly control the mean*.

**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, ..., y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

**Bounded Variance** means are  $\sim \sigma \sqrt{\epsilon}$  apart.



**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, ..., y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

**Bounded 2k-moments** means are  $\sim \sigma \epsilon^{1-1/k}$  apart.

$$\mathbb{E}(x-\mu)^{2k} \le (Ck)^k (\mathbb{E}(x-\mu)^2)^k$$



$$\mathcal{D}_{2} = \frac{(1-\varepsilon)/2 \quad (1-\varepsilon)/2}{-\sigma \quad \sigma} \frac{\varepsilon}{\sigma \varepsilon^{-1/k}}$$

**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, ..., y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

### high dimensional setting

### **Bounded Moment Distributions**

 $\mathcal{D}$  has **C**-bounded **2k**-moments, if for every  $u \in \mathbb{R}^d$ 

$$\mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2k} \le (C \cdot k \cdot \mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2})^{k}$$

**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, ..., y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

### high dimensional setting

### **Bounded Moment Distributions**

 $\mathcal{D}$  has **C**-bounded **2k**-moments, if for every  $u \in \mathbb{R}^d$ 

$$\mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2k} \le (C \cdot k \cdot \mathbb{E}_{\mathcal{D}}\langle x - \mu, u \rangle^{2})^{k}$$

Natural families are bounded for all k.

2k-wise Product Distributions, Sub-gaussian/Sub-exp Families,...

**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

A flurry of activity starting with the pioneering papers of [Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16] [Lai-Rao-Vempala'16]

**Setting:** unknown distribution  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

A flurry of activity starting with the pioneering papers of [Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16] [Lai-Rao-Vempala'16]

will skip a detailed survey and instead give you punchlines. focus on estimation error for a given dist. family.

### Quick summary of what's known

**Bounded Covariance** 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
 optimal!

[Lai-Rao-Vempala'16]

[Charikar-Steinhardt-Valiant'17]

[Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'17]

### Quick summary of what's known

**Bounded Covariance** 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
 optimal!   
**Gaussians**  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$  ~optimal!

[Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16]

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

For covariance estimation, optimal results only for gaussians.

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

### **Bounded 2k-Moments**

relates to the hardness of UG/SSE.

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

**Certified Bounded 2k-Moments** 

"higher-moment information is algorithmically accessible"

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

### **Certified Bounded 2k-Moments**

### **Examples**

- Gaussians, product distributions on discrete hypercube,...
- k-wise product distributions
- Distributions satisfying **Poincaré** inequality [K-Steinhardt'17] includes all *strongly log-concave* distributions

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

### **Certified Bounded 2k-Moments**

[K-Steurer'18] 
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1-\frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time  $d^{O(k)}$  optimal!

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

### **Certified Bounded 2k-Moments**

[K-Steurer'18] 
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1 - \frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time  $d^{O(k)}$ 

via the SoS method.

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

### **Certified Bounded 2k-Moments**

[K-Steurer'18] 
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1 - \frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time  $d^{O(k)}$ 

optimal results for covariance and higher moment estimation!

Corollary "outlier-robust method of moments" [Pearson'94],...,[Kalai-Moitra-Valiant'10,Belkin-Sinha'10],...

- Robust Independent Component Analysis.
- Robust Learning of Mixture of Gaussians for linearly indep. means.

### Quick summary of what's known

Bounded Covariance 
$$\|\hat{\mu} - \mu\| \le O(\epsilon^{1/2}) \|\Sigma\|^{1/2}$$
  
Gaussians  $\|\hat{\mu} - \mu\| \le O(\epsilon) \sqrt{\log(1/\epsilon)} \|\Sigma\|^{1/2}$ 

### **Certified Bounded 2k-Moments**

[K-Steurer'18] 
$$\|\hat{\mu} - \mu\| \le O(\sqrt{Ck}) \cdot e^{1 - \frac{1}{2k}} \cdot \|\Sigma\|^{1/2}$$
 in time  $d^{O(k)}$ 

### conceptual power of SoS in robust estimation

- allows algorithmically using higher moment information in data.
- key to improved algorithms for clustering mixture models.

# Our Goal Today

One algorithm to robustly estimate them all...



unified conceptual blueprint, simple proofs.



don't try this on your personal computers yet.

**Setting:** unknown  $\mathcal{D}$  on  $\mathbb{R}^d$  with unknown mean  $\mu \in \mathbb{R}^d$  and cov.  $\Sigma$   $X = \{x_1, x_2, \dots, x_m\}$  i.i.d. sample from  $\mathcal{D}$ 

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$   $\varepsilon$ -corruption of X.  $y_i = x_i$  for  $(1 - \varepsilon)m$  indices i

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Standard blueprint for problems in unsupervised learning

**Step 1:** Robust Identifiability

A small sample Y *uniquely* identifies\*  $\mu$  up to a small error.

Step 2: Algorithm Design An efficient algorithm to find  $\hat{\mu}$  .

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Standard blueprint for problems in unsupervised learning

### Step 1: Robust Identifiability

A small sample Y *uniquely* **identifies**\*  $\mu$  up to a small error.

- = a test that only approx. true parameters can pass.
- = a *certificate* that a purported solution is **correct**.

what Ilias showed you in the first part today!

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Standard blueprint for problems in unsupervised learning

### Step 1: Robust Identifiability

A small sample Y *uniquely* identifies\*  $\mu$  up to a small error.

- = a test that only approx. true parameters can pass.
- = a *certificate* that a purported solution is correct.

determines *sample complexity*. Implies that brute-force succeeds.



**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y *uniquely* identifies\*  $\mu$  up to a small error.

I'm going to show you a magical world where "P = NP"!

**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Standard blueprint for problems in unsupervised learning

### Step 1: Robust Identifiability

A small sample Y *uniquely* **identifies**\*  $\mu$  up to a small error.

simple (low degree SoS) proof of identifiability = efficient algorithm.



**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Standard blueprint for problems in unsupervised learning

### Step 1: Robust Identifiability

A small sample Y *uniquely* identifies\*  $\mu$  up to a small error.

simple (low degree SoS) proof of identifiability = efficient algorithm.

Luckily, our proofs are often simple without additional effort!



**Input:**  $Y = \{y_1, y_2, \dots, y_m\}$  *\varepsilon*-corruption of  $X \sim \mathcal{D}^m$  with  $\mu, \Sigma$ 

**Goal:** Compute  $\hat{\mu} \in \mathbb{R}^d$  so that  $\|\mu - \hat{\mu}\|_2$  is as small as possible.

Standard blueprint for problems in unsupervised learning

**Step 1:** Robust Identifiability

A small sample Y *uniquely* identifies\*  $\mu$  up to a small error.

DONE! [Barak-Kelner-Steurer'15],...

Step 2 is problem independent!

Step 2: Algorithm Design
An efficient algorithm to find  $\hat{\mu}$ .

Why does a corrupted sample uniquely\* determine the mean?

Why does a corrupted sample uniquely\* determine the mean?



If  $m \approx d/\epsilon^2$ , the uniform distribution on the **sample** satisfies the bounded variance property whp.

Why does a corrupted sample uniquely\* determine the mean?



If  $m \approx d/\epsilon^2$ , the uniform distribution on the **sample** satisfies the bounded variance property whp.

Why does a corrupted sample uniquely\* determine the mean?



If  $m \approx d/\epsilon^2$ , the uniform distribution on the **sample** satisfies the bounded variance property whp.

Why does a corrupted sample uniquely\* determine the mean?



"Unique Decodability"

Why does a corrupted sample uniquely\* determine the mean?



Why do nearby samples have close parameters?

Why does a corrupted sample uniquely\* determine the mean?

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:  $\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9$ . Then,  $\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'})$ 

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Soon we will obtain better guarantees under bounded moment assumptions.

Why does a corrupted sample uniquely\* determine the mean?

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:  

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{ . Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_{X'}^2 = \|\Sigma(X')\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

#### **Inefficient Algorithm**

- 1. Find an  $\epsilon$ -close sample that has the smallest covariance
- 2. Return its mean.

In 1-D, corresponds to modifying the largest/smallest points.

~ median



Thank you for your attention!

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

- 1)  $\mathcal{U}_X$  and  $\mathcal{U}_{X'}$  have 1-bounded 4th moments, and
- 2)  $\Pr_{i \in [n]} \{ x_i \neq x_i' \} = \epsilon < 0.9$ . Then,  $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$   $\|\sigma_X^2 = \|\Sigma(X)\|$

$$|\mu(X) - \mu(X')| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

### Coming up...

Automatically translate "simple" *identifiability* proofs into algorithms! What does simple mean?

#### captured in the sum of squares proof system

- A proof system that reasons about polynomial inequalities
- Degree t proofs can be found in time  $d^{O(t)}$
- Many natural inequalities have low-degree SoS proofs Holder's, Cauchy-Schwarz, Triangle Inequality, Brascamp-Lieb inequalities...

growing general toolkit for ready to use SoS facts\*!

\*See notes at <u>sumofsquares.org</u>

Why does a corrupted sample uniquely\* determine the mean?

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{. Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_{X'}^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

### **Proof** By Cauchy-Schwarz

$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle = \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

$$\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\})\right)^{1/2} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle\right)^{1/2}$$

Why does a corrupted sample uniquely\* determine the mean?

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{. Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

### **Proof** By Cauchy-Schwarz

$$\frac{1}{n} \sum_{i} \langle u, x_{i} - x'_{i} \rangle = \frac{1}{n} \sum_{i} \mathbb{1}(\{x_{i} \neq x'_{i}\}) \cdot \langle u, x_{i} - x'_{i} \rangle$$

$$\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_{i} \neq x'_{i}\})\right)^{1/2} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_{i} - x'_{i} \rangle\right)^{1/2}$$

$$\leq \epsilon^{1/2} \cdot (\mathbb{E}_{i} \langle u, x_{i} - \mu(X) \rangle) + (\langle u, x'_{i} - \mu(X')) + \langle u, \mu(X) - \mu(X') \rangle)^{1/2}$$

Why does a corrupted sample uniquely\* determine the mean?

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{. Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_{X'}^2 = \|\Sigma(X')\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

### **Proof** By Cauchy-Schwarz

$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle = \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

$$\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\})\right)^{1/2} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle\right)^{1/2}$$

$$\leq O(\epsilon^{1/2})(\sigma_X + \sigma_{X'} + |\langle u, \mu(X) - \mu(X') \rangle|^{1/2})$$

Rearrange to get the lemma!

# Algorithm from Identifiability

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

$$\Pr_{i \in [n]} \{x_i \neq x'_i\} = \epsilon < 0.9 \text{ . Then,}$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{1/2})(\sigma_X + \sigma_{X'}) \quad \sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

SDP relaxation for the following quadratic program works!

**Input**  $\{y_1, y_2, \dots, y_n\}$   $\epsilon$ -corrupted sample.

#### Variables/Constraints

 $X' = \{x'_1, x'_2, \dots, x'_n\}$  a guess for original sample. A coupling w.

$$w_i^2 = w_i \quad w_i(y_i - x_i') = 0 \quad \forall i \quad \sum_i w_i = (1 - \epsilon)n$$

**Minimize**  $\|\Sigma(X')\|$ 

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

- 1)  $\mathcal{U}_X$  and  $\mathcal{U}_{X'}$  have 1-bounded 4th moments, and
- 2)  $\Pr_{i \in [n]} \{ x_i \neq x_i' \} = \epsilon < 0.9$ . Then,  $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$   $\|\sigma_X^2 = \|\Sigma(X)\|$

$$|\mu(X) - \mu(X')| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

Proof 
$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle \le \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

Holder  $\le \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}^{4/3})\right)^{3/4} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle^4\right)^{1/4}$ 

#### Lemma (Identifiability)

Let  $X = \{x_1, x_2, ..., x_n\}$  and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

1)  $\mathcal{U}_X$  and  $\mathcal{U}_{X'}$  have 1-bounded 4th moments, and

1) 
$$\omega_X$$
 and  $\omega_{X'}$  have 1-bounded 4th moments, and 2)  $\Pr_{i \in [n]} \{x_i \neq x_i'\} = \epsilon < 0.9$ . Then,  $\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$   $\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$ 

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

Proof 
$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle \leq \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

Holder  $\leq \left(\frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}^{4/3})\right)^{3/4} \cdot \left(\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle^4\right)^{1/4}$ 
 $\leq O(\epsilon^{3/4}) \left(\left(\mathbb{E}_i \langle u, x_i - \mu(X) \rangle^4\right)^{1/4} + \left(\mathbb{E}_i \langle u, x_i' - \mu(X') \rangle^4\right)^{1/4} + \left(\langle u, \mu(X) - \mu(X') \rangle^4\right)^{1/4}\right)$ 

#### Lemma (Identifiability)

Let  $X = \{x_1, x_2, ..., x_n\}$  and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

- 1)  $\mathcal{U}_X$  and  $\mathcal{U}_{X'}$  have 1-bounded 4th moments, and
- 2)  $\Pr_{i \in [n]} \{ x_i \neq x_i' \} = \epsilon < 0.9$ . Then,  $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$   $\|\sigma_X^2 = \|\Sigma(X)\|$

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

$$\|\mu(X) - \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

**Proof** 
$$\frac{1}{n} \sum_{i} \langle u, x_i - x_i' \rangle \leq \frac{1}{n} \sum_{i} \mathbb{1}(\{x_i \neq x_i'\}) \cdot \langle u, x_i - x_i' \rangle$$

Holder 
$$\leq \left(\frac{1}{n}\sum_{i}\mathbb{1}(\{x_i \neq x_i'\}^{4/3})\right)^{3/4} \cdot \left(\frac{1}{n}\sum_{i}\langle u, x_i - x_i'\rangle^4\right)^{1/4}$$

certified bounded 
$$\leq O(\epsilon^{3/4}) \left(\sigma_X + \sigma_{X'} + |\langle u, \mu(X) - \mu(X') \rangle|\right)$$
 moment property

Rearrange!

#### Lemma (Identifiability)

Let 
$$X = \{x_1, x_2, ..., x_n\}$$
 and  $X' = \{x'_1, x'_2, ..., x'_n\}$  be such that:

- 1)  $\mathcal{U}_X$  and  $\mathcal{U}_{X'}$  have 1-bounded 4th moments, and
- 2)  $\Pr_{i \in [n]} \{x_i \neq x_i'\} = \epsilon < 0.9$ . Then,  $\|\mu(X) \mu(X')\| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$   $\|\sigma_X^2 = \|\Sigma(X)\|$

$$|\mu(X) - \mu(X')| < O(\epsilon^{3/4})(\sigma_X + \sigma_{X'})$$

$$\sigma_X^2 = \|\Sigma(X)\|$$

$$\sigma_{X'}^2 = \|\Sigma(X')\|$$

Again yields a simple SDP\* relaxation as before!

\*some care to have a constraint for "bounded moment property"