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Parameter Estimation

STRUCTURE
7 estlmathn”

X1,X2,...,Xm eRd ﬁ @GRP

Machine Learning

mixture models, topic models, independent component analysis,
principal component analysis, compressive sensing,

matrix completion, regression, robust versions,...

\




Parameter Estimation

“estimation”

X1,X2,...,Xm ERd ﬁ @E]Rp

Machine Learning

Cryptography security of pseudorandom generators,...



Parameter Estimation

“estimation”

X1,X2,...,Xm ERd ﬁ @ERP

Machine Learning

Cryptography
avg-case complexity planted clique, refuting random CSPs,...



Parameter Estimation

DATA STRUCTURE
“estimation”

X1,X2,...,Xm ERd ﬁ @EIRP

SAMPLE COMPLEXITY

how much data is required for recovering © ? /i R

SUM-OF-SQUARES METHOD

a unified approach for parameter estimation




SoS for Parameter Estimation

ROBUST STATISTICS
MOMENT ESTIMATION [K-Steurer’18]
CLUSTERING MIXTURE MODELS [Hopkins-Li'18],[K-Steinhardt'18]
REGRESSION [Klivans-K-Meka’18]
SPARSE RECOVERY [Klivans-Karmalkar-K’18]
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SoS for Parameter Estimation

MACHINE LEARNING
MOMENT ESTIMATION  [K-Steurer’18]
CLUSTERING MIXTURE MODELS [Hopkins-Li'18],[K-Steinhardt'18]
REGRESSION [Klivans-K-Meka’18]

SPARSE RECOVERY [Klivans-Karmalkar-K"18]

e " . \ TENSOR COMPLETION [Barak-Moitra’15, Potechin-Steurer’16]

TENSOR PCA [Hopkins-Shi-Steurer’15]

WENSOR DECOMPOSITION | Barak-Kelner-Steurer’14, Ge-Ma’15,
DICTIONARY LEARNING  Ma-Shi-Steurer’16)]

COMP. V5 STAT. COMPLEXITY GAPS

RANDOM CSPS

PLANTED CLIQUE
SPARSE PCA
TENSOR PCA

| Allen-O’Donnell-Witmer’15,
Barak-Chan-K’15]
[ K-Mori-O’'Donnell-Witmer’17]

Barak-Hopkins-Kelner-K-Moitra-Potechin’16]

Hopkins-K-Potechin-Raghavendra-

Schramm-Steurer’17]



Know Thy Hammer

Upshots

* Single blueprint for parameter estimation.
“identifiability to algorithm”

* general tools to prove optimal lower bounds
“comp. vs stat. gaps”

Downsides

* theoretically efficient, practically slow
“hammer not a scalpel”

can extract fast practical algorithms sometimes

.

[Hopkins-Schramm-Shi-Steurer’16],...

ask Sam!




Know Thy Hammer

Our Goal

 understand algorithmically exploitable structure in the problem
 uncover fundamental tradeoffs/barriers.



Today

lllustrate Sum-of-Squares Method for Parameter Estimation

/ Parameter Estimation Via SoS \
”Simple” Identifiability Efficient Algorithm
Proof
\ Example: Robust Moment Estimation [K-Steurer'18] /

focus on mean estimation




Robust Mean Estimation

Setting: unknown distribution D on R? with unknown mean # € R“

X ={x1,%2,..-, X} ii.d. sample from D

IHPUt Y = {yll Yo,... /ym} €-C01‘1‘upti0n of X.

y; = x; for (1 —¢)m indices i

Goal: Compute ji € RY so that | — f1]|2 is as small as possible.

Is robust mean estimation possible?

Dl—‘_ﬁ—

1/2 1/2

(1—¢)/2((1—¢)/2 c




Robust Mean Estimation

Is robust mean estimation possible?

» cannot tell apart distributions e-close in stat. distance.

* eclose distributions can have arbitrarily differing means.

so info. theoretically impossible in general.



Robust Mean Estimation

Is robust mean estimation possible?

assume that D comes from a reasonable family

What we'll do: where tails do not strongly control the mean.



Robust Mean Estimation

Bounded Variance means are ~ ¢+/e apart.

1/2 1/2
(1—¢)/2 (1—¢)/2 e
Dy ——————————o—o—0—————
—0 o



Robust Mean Estimation

Bounded 2k-moments means are ~ gel /K

E(x — pu)* < (Ch)*(E(x — p)*)"

apart.

D —m e ——o———————————
1/2 1/2



Robust Mean Estimation

high dimensional setting

Bounded Moment Distributions
D has C-bounded 2k-moments, if for every y &€ R4

Ep(x — y,u>2k < (C-k-Ep{x— y,u}z)k




Robust Mean Estimation

high dimensional setting

Bounded Moment Distributions
D has C-bounded 2k-moments, if for every y &€ R4

Ep(x — y,u>2k < (C-k-Ep{x— y,u}z)k

Natural families are bounded for all k.
2k-wise Product Distributions, Sub-gaussian/Sub-exp Families,...



Robust Mean Estimation

Setting: unknown distribution D on R? with unknown mean U e RR?

X ={x1,%2,..-, X} ii.d. sample from D

IHPUt Y = {yll Yo,... /ym} €-C01‘1‘upti0n of X.

y; = x; for (1 —¢)m indices i

Goal: Compute 71 € R so that | — f1]|2 is as small as possible.
pute } P

A flurry of activity starting with the pioneering papers of
[Diakonikolas-Kane-Kamath-Li-Moitra-Stewart’16] [Lai-Rao-Vempala’l6]



Robust Mean Estimation

Setting: unknown distribution D on R? with unknown mean U e R*

X ={x1,%2,..-, X} ii.d. sample from D

IHPUt Y = {yll Yo,... /ym} €-C01‘1‘upti0n of X.

y; = x; for (1 —¢)m indices i

Goal: Compute 71 € R so that | — f1]|2 is as small as possible.
pute } P

A flurry of activity starting with the pioneering papers of
[Diakonikolas-Kane-Kamath-Li-Moitra-Stewart’16] [Lai-Rao-Vempala’l6]

will skip a detailed survey and instead give you punchlines.

focus on estimation error for a given dist. family.



Robust Mean Estimation

Quick summary of what’s known

Bounded Covariance ||fi — u|| < O(e'/?)||Z]|/?  optimal!
Lai-Rao-Vempala’lG]

[Charikar-Steinhardt-Valiant’17]
Diakonikolas-Kane-Kamath-Li-Moitra-Stewart’17]




Robust Mean Estimation

Quick summary of what’s known
Bounded Covariance ||fi — u|| < O(e'/?)||Z]|/?  optimal!

Gaussians ||fi — u|| < O(e)\/log (1/€)]|%
[Diakonikolas-Kane-Kamath-Li-Moitra-Stewart’16]

1172 ~optimal!




Robust Mean Estimation

Quick summary of what’s known
< O(e"?)|1Z]"/3

—H
— || < O(e)y/log (1/¢) ="/

Bounded Covariance

>

Gaussians

>

For covariance estimation, optimal results only for gaussians.



Robust Mean Estimation

Quick summary of what’s known
< O(e"?)|1Z]"/3

—H
— || < O(e)y/log (1/¢) ="/

Bounded Covariance

>

Gaussians

>

Bounded 2k-Moments
relates to the hardness of UG/SSE.



Robust Mean Estimation

Quick summary of what’s known
< O(e"?)|1Z]"/3

—H
— || < O(e)y/log (1/¢) ="/

Bounded Covariance

>

Gaussians

>

Certified Bounded 2k-Moments

“higher-moment information is algorithmically accessible”



Robust Mean Estimation

Quick summary of what’s known
< O(e"?)|1Z]"/3

H
ull < O(e)/log (1/€)]| 5|2

Bounded Covariance ||ji —
Gaussians ||fi —

Certified Bounded 2k-Moments

Examples

* Gaussians, product distributions on discrete hypercube, ...

» k-wise product distributions

* Distributions satistying Poincaré inequality [K-Steinhardt’17]
includes all strongly log-concave distributions



Robust Mean Estimation

Quick summary of what’s known
< O(e"?)|1Z]"/3

—H
— || < O(e)y/log (1/¢) ="/

Bounded Covariance

>

Gaussians

>

Certified Bounded 2k-Moments
(K-Steurer'18] ||l — || < O(V/Ck) - €' % - ||2[|'/2 in time d°®)

optimal!



Robust Mean Estimation

Quick summary of what’s known
< O(e"?)|1Z]"/3

—H
— || < O(e)y/log (1/¢) ="/

Bounded Covariance

>

Gaussians

>

Certified Bounded 2k-Moments
(K-Steurer'18] ||l — || < O(V/Ck) - €' % - ||2[|'/2 in time d°®)

via the SoS method.



Robust Mean Estimation

Quick summary of what’s known

Bounded Covariance

Gaussians

Certified Bounded 2k-Moments

=
=

H
H

< O(e!?) |22
< 0(e),/log (1/€)[| 5|2

(K-Steurer'18] ||l — u| < O(V/Ck) - €' % - ||X[|'/2 in time d°®)

optimal results for covariance and higher moment estimation!

Corollary “outlier-robust method of moments”
[Pearson’94],...,[Kalai-Moitra-Valiant’10,Belkin-Sinha’10],...

* Robust Independent Component Analysis.

* Robust Learning of Mixture of Gaussians for linearly indep. means.



Robust Mean Estimation

Quick summary of what’s known

Bounded Covariance

Gaussians

Certified Bounded 2k-Moments

=

—H
—H

< O(e!?) |22
< 0(e),/log (1/€)[| 5|2

(K-Steurer'18] ||l — u| < O(V/Ck) - €' % - ||X[|'/2 in time d°®)

conceptual power of SoS in robust estimation

» allows algorithmically using higher moment information in data.

* key to improved algorithms for clustering mixture models.



Our Goal Today

One algorithm to robustly estimate them all...

unified conceptual blueprint, simple proofs.

don’t try this on your personal computers yet.




Robust Mean Estimation

Setting: unknown D on R“ with unknown mean 1€ RY and cov. X

X ={x1,%2,..-, X} ii.d. sample from D

IHPUt3 Y = {yll Yo,... /ym} €-C01‘1‘upti0n of X.

y; = x; for (1 —¢)m indices i

Goal: Compute ji € RY so that | — f1]|2 is as small as possible.



Robust Mean Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.



SoS Approach to Robust Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y uniquely identifies™ ¢ up to a small error.

Step 2: Algorithm Design
An efficient algorithm to find /i .



SoS Approach to Robust Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.

Standard blueprint for problems in unsupervised learning

= a test that only approx. true parameters can pass.

= a certificate that a purported solution is correct.

what Ilias showed you in the first part today!



SoS Approach to Robust Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y uniquely identifies™ ¢ up to a small error.

= a test that only approx. true parameters can pass.
= a certificate that a purported solution is correct.

determines sample complexity. Implies that brute-force succeeds.

Proof of identifiability

v

Exponential time
dat p & truct
e _>[ algorithm o) }* JHHETE




SoS Approach to Robust Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.

Standard blueprint for problems in unsupervised learning

I'm going to show you a magical world where “P = NP”!



SoS Approach to Robust Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.

Standard blueprint for problems in unsupervised learning

simple (low degree SoS) proof of identifiability = efficient algorithm.

“Simple” Proof of identifiability

v

Efficient Q
data —}[ algorithm O structure




SoS Approach to Robust Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.

Standard blueprint for problems in unsupervised learning

simple (low degree SoS) proof of identifiability = efficient algorithm.

Luckily, our proofs are often simple without additional effort!

“Simple” Proof of identifiability

Efficient Q
data —}[ algorithm O structure




SoS Approach to Robust Estimation

Input: Y = {y1,y2,...,Ym} e-corruption of X ~ D™ with p, %
Goal: Compute ji € RY so that |2 — f1]|2 is as small as possible.

Standard blueprint for problems in unsupervised learning

Step 1: Robust Identifiability

A small sample Y uniquely identifies™ 4 up to a small error.

DONE! [Barak-Kelner-Steurer’15],...

Step 2 is problem independent!

An efficient algerith '



SoS Approach to Robust Estimation

Why does a corrupted sample uniquely™* determine the mean?

“up to a small error



SoS Approach to Robust Estimation

Why does a corrupted sample uniquely* determine the mean?

Typical m-samples from
bounded covariance
distributions

If m ~ d/e*, the uniform distribution on the sample
satisfies the bounded variance property whp.



SoS Approach to Robust Estimation

Why does a corrupted sample uniquely* determine the mean?

corrupted sample

D
Original Sample

.
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.
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-
*
»
-
3
*
-
-
.0
*

Typical m-samples from
bounded moment
distributions

If m ~ d/e*, the uniform distribution on the sample
satisfies the bounded variance property whp.
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Why does a corrupted sample uniquely* determine the mean?

corrupted sample

D
Original Sample
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Typical m-samples from
bounded moment
distributions

If m ~ d/e*, the uniform distribution on the sample
satisfies the bounded variance property whp.



SoS Approach to Robust Estimation

Why does a corrupted sample uniquely* determine the mean?

corrupted sample

D
Original Sample

.
-
.
.
-
-
*
»
-
3
*
-
-
.0
*

Typical m-samples from
bounded moment
distributions

“Unique Decodability”



SoS Approach to Robust Estimation

Why does a corrupted sample uniquely* determine the mean?

corrupted sample

D
Original Sample

.
-
.
.
-
-
*
»
-
3
*
-
-
.0
*

Typical m-samples from
bounded moment
distributions

Why do nearby samples have close parameters?



Identifiability for Mean Estimation

Why does a corrupted sample uniquely™* determine the mean?

Lemma (Identifiability)

Let X =

{xlleI c ooy

Xn}and X = {x},x5,...,x;,} be such that:

Pr {xl + x.} =€ <0.9. Then,

i€ |n
ok = [Z(X)|
oy = [|IZ(X))|

[1(X) = u(X)|| < O(e"?)(ox + oxr)

Soon we will obtain better guarantees
under bounded moment assumptions.



Identifiability for Mean Estimation

Why does a corrupted sample uniquely™* determine the mean?

Lemma (Identifiability)
Let X={x1,x2,...,x,}and X' = {x},x5,...,x;} be such that:

.Pr]{xi ~x.} =€ <09. Then,

i€ln
[1(X) = u(X)[I < O(e"?)(ox +ox) | 02, = (X))

Inefficient Algorithm
1. Find an e-close sample that has the smallest covariance

2. Return its mean.

In 1-D, corresponds to modifying the largest/smallest points.

~ median






Thank you for your attention!



Identifiability for Mean Estimation

Lemma (Identifiability)

Let X={x1,x2,...,x,}and X = {x},x5,...,x,} be such that:

1) Ux and Ux have 1-bounded 4th moments, and

2) .P[r]{xi £ xt=€<09. Then,
cn

[u(X) = p(X)|| < O(e*) (ox + oxr)




Coming up...

Automatically translate “simple” identifiability proofs into algorithms!

What does simple mean?

captured in the sum of squares proof system

A proof system that reasons about polynomial inequalities
* Degree t proofs can be found in time 40

« Many natural inequalities have low-degree SoS proofs

Holder’s, Cauchy-Schwarz, Triangle Inequality, Brascamp-Lieb inequalities...

growing general toolkit for ready to use SoS facts™!

“See notes at sumofsquares.org



http://sumofsquares.org

Identifiability for Mean Estimation

Why does a corrupted sample uniquely™* determine the mean?

Lemma (Identifiability)
Let X={x1,x2,...,x,}and X' = {x},x5,...,x;} be such that:

Pr {xl + x.} =€ <0.9. Then,
i€ ox = |Z(X)|

[1(X) = u(X)[I < O(e"?)(ox +ox) | 02, = (X))

Proof By Cauchy—Schwarz

—Zuxl—x 211 {xi # xi}) - (u,x; — xj)
1/2 ] 1/2
< (n Zﬂ({xi 7 xf})) | (n Z<”'xi x§>)



Identifiability for Mean Estimation

Why does a corrupted sample uniquely™* determine the mean?

Lemma (Identifiability)

Let X={x1,x2,...,x,}and X' = {x},x5,...,x;} be such that:
Pr {xl + x.} =€ <0.9. Then,

i€ |n|

[1(X) = u(X)|l < O(e'?) (ox + ox1) | 2
Proof By Cauchy—Schwarz

—Zuxl—x 211 {xi # xi}) - (u,x; — x7)

1/2 1 1/2
< ( Y A({x # x;}>) (nz %~ 3 )

< M2 (B {u, x; — u(X))) + ((w, xF — u(X')) + (u, u(X) — ,’I/l(X/)>)1/2




Identifiability for Mean Estimation

Why does a corrupted sample uniquely™* determine the mean?

Lemma (Identifiability)
Let X={x1,x2,...,x,}and X' = {x},x5,...,x;} be such that:

Pr {xl + x.} =€ <0.9. Then,
i€ ox = |Z(X)|

[1(X) = u(X)[I < O(e"?)(ox +ox) | 02, = (X))

Proof By Cauchy—Schwarz

—Zuxl—x 211 {xi # xi}) - (u,x; — xj)
1/2 ] 1/2
< (n Zﬂ({xi 7 xf})) | (n Z<”'xi - x§>)

< O(e"?)(ox +ox + [(u, u(X) — u(X'))|?)

Rearrange to get the lemmal!



Algorithm from Identifiability

(Identifiability)
Let X={x1,x2,...,x,}and X' = {x},x5,...,x;,} be such that:
Pr {XZ #x } — e <09, Then,

i€ |n

SDP relaxation for the following quadratic program works!
Input vy, Y2, Yn} e-corrupted sample.

Variables/Constraints
—{x},x5,...,x.} a guess for original sample. A coupling w.

w? =w; wi(y; —x)) =0 Vi sz— (1—¢)n

Minimize [|Z(X")]|



Identifiability for Mean Estimation

Lemma (Identifiability)
Let X={x1,x2,...,x,}and X = {x},x5,...,x,} be such that:
1) Ux and Ux have 1-bounded 4th moments, and

ox = [IZ(X)||
2) Pr{xj#x/} =e<09.  Then, X
oyt 7k % = 2]
[1(X) = (X"l < O(e¥*) (ox + o)
1 < X W) v — o
Proof EDWZ x;) < » Zi;]l({xZ # x;}) - (u,x; — x;)

1

3/4 1/4
Holder < (31 ;ﬂ({xi + x§}4/3)> . (i Z(u, X; — x;>4)

1



Identifiability for Mean Estimation

Lemma (Identifiability)
Let X={x1,x2,...,x,}and X = {x},x5,...,x,} be such that:

1) Ux and Ux have 1-bounded 4th moments, and

ox = [IZ(X)||
2) Pr{xj#x/} =e<09.  Then, X
oyt 7k % = 2]
[1(X) = (X"l < O(e¥*) (ox + o)
1 < X W) v — o
Proof EZW"CZ x;) < » Zi;]l({xZ # x;}) - (u,x; — x;)

1

1 1

3/4 1/4
Holder < (n le({xi + x§}4/3)> . (n Z(u, X; — x§>4)

1 1

< 0(63/4)((iEi<u, X; — y(X))‘L)l/i ( () X — V(X/)>4)1/4

+ (w0 = x4 )




Identifiability for Mean Estimation
Lemma (Identifiability)
Let X={x1,x2,...,x,}and X = {x},x5,...,x,} be such that:
1) Ux and Ux have 1-bounded 4th moments, and

ox = [IZ(X)||
2) Pr{xj#x/} =e<09.  Then, X
oyt 7k % = 2]
[1(X) = (X"l < O(e¥*) (ox + o)
1 < X W) v — o
Proof EZ(u,xz x;) < n;]l({xl # x;}) - (u,x; — x;)

Z 1 /4 1/4
Holder < (n le({xi + x§}4/3)> . (n Z(u, Xj — x§>4)
l I
certified bounded

< 0(e’") (ox + o + [, p(X) — p(X))])
moment property

Rearrange!



Identifiability for Mean Estimation

Lemma (Identifiability)

Let X={x1,x2,...,x,}and X = {x},x5,...,x,} be such that:
1) Ux and Uy have 1-bounded 4th moments, and

2 =X
2) Pr{xj#x/} =e<09.  Then, X
oV 7 X 2, = |=(X)]

[u(X) = p(X)|| < O(e*) (ox + oxr)

Again yields a simple SDP” relaxation as before!

*some care to have a constraint for “bounded moment property”




