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© Regularized M-estimators
@ Statistical M-estimation
@ Nonconvexity
o Consistency of local optima

9 High-dimensional robust regression
@ Statistical consistency
@ Asymptotic normality
@ Two-step M-estimators
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Regularized M-estimators

o Prediction/regression problem: Observe {(x;,y;)}"_;, estimate

p* = 3rgﬁf2]i1§pE[£(ﬂ:Xi,Yi)]v xi€RP, yieR
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Regularized M-estimators

o Prediction/regression problem: Observe {(x;,y;)}"_;, estimate
B* =arg min E[{(B; xi,yi)],  x €RP, yieR
BERP

@ Statistical M-estimator:

ﬁeargmm{ Z[ B xi, yi }

in high dimensions, may be ill-conditioned, large solution space
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Regularized M-estimators

o Prediction/regression problem: Observe {(x;, y;)}7_;, estimate
B* =arg min E[{(B;x,yi)], x€RP, yeR
BERP

@ Regularized M-estimator:

Bearg mﬁin { % Zlg(ﬂ;xi‘/yi) +P,\(5)}

Ln(8)
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Example: ¢1-regularized OLS regression

@ Linear model: vi =x B* + €, 18%l0 < k
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Example: ¢1-regularized OLS regression

@ Linear model: vi =x B* + €, 18%l0 < k

@ Low-dimensional M-estimator:

~ 1 o
fovs € arg min {n > i— X,'Tﬂ)2}

i=1
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Example: ¢1-regularized OLS regression

@ Linear model: vi =x B* + €, 18%l0 < k

@ Low-dimensional M-estimator:

n

n -1 n
2 )1 T 32 L T 1
PoLs € arg mﬁln {n Z(Yi —x f) } = (n ;Xixi ) (n ;%X:)

i=1
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Example: ¢1-regularized OLS regression

@ Linear model: vi =x B* + €, 18%l0 < k

@ Low-dimensional M-estimator:

n

n -1 n
2 )1 T 32 L T 1
PoLs € arg mﬁln {n Z(Yi —x f) } = (n ;Xixi ) (n ;%X:)

i=1

o High-dimensional regularized M-estimator:

n

~ . 1
/BLasso € arg mﬁm {n Zl(yl - XIT6)2 + /\’/3“1}
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Sources of nonconvexity

@ May arise in loss or regularizer
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Sources of nonconvexity

@ May arise in loss or regularizer

@ Nonconvex loss used to correct bias, increase efficiency
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Sources of nonconvexity

@ May arise in loss or regularizer

@ Nonconvex loss used to correct bias, increase efficiency

@ Nonconvex regularizer used to reduce bias, achieve oracle result
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Example: Errors-in-variables regression

o Model:
vi=x{ B +e

observe {(z, y;)}7_;, infer 5*
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Example: Errors-in-variables regression

o Model:
vi=x{ B +e

observe {(z, y;)}7_;, infer 5*
@ OLS estimator

~ 1<
B € arg mﬁin {n ;(ZiTﬁ — i)+ )\”5”1}

statistically inconsistent
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Corrected losses

o L. & Wainwright '12 propose natural method for correcting loss for
linear regression:

FXTX yXT

Bovs € arg min {Qﬁ — B+ px(ﬂ)}
Beor € argmin {;ﬁTFB ~376+ m(ﬂ)}

(I',7) estimators for (Cov(x;), Cov(x;, y;)) based on {(zi,yi)}7;
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Example: Additive noise

@ Additive noise: Z = X + W, use

zZTz zT
- zWa ’7 = y
n n

r=

@ However, corrected objective nonconvex:

ZTZ_
n

~ Tz
/Bcorr S arg mﬁin {i/BT< ZW)ﬁ - yTﬁ + Pk(ﬂ)}
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Example: Additive noise

@ Additive noise: Z = X + W, use

zZTz zT
- zWa ’7 = y
n n

r=

@ However, corrected objective nonconvex:

T

R T
Beorr € argmﬁin {1/8T<Z ‘ - Z,,,,)ﬁ - )/,725+p)\(ﬂ)}

2 n

@ Fortunately, local optima have good properties
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Nonconvex regularizers

@ (1 is “convexified” version of £y

EO [1

I 1
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Nonconvex regularizers

@ (1 is “convexified” version of £y

fo [1

I 1

v
(e

\ 4
an}
A

!

@ But /7 penalizes larger coefficients more, causes solution bias
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Alternative regularizers

@ Various nonconvex regularizers in literature (Fan & Li '01, Zhang '10, etc.)

4 :
—SCAD
3.5} —MCP 1
_Iq
3r capped I1 1
2.5¢ _|1 1
2
e N e
1k i
0.51 ]
-4 -2 0 2 4
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Empirical benefits

@ Nonconvex regularizers show significant improvement (Breheny &

Huang '11)
00 05 1.0 15 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Local vs. global optima

@ Optimization algorithms only guaranteed to find local optima
(stationary points)

@ Statistical theory only guarantees consistency of global optima
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Local vs. global optima

@ Optimization algorithms only guaranteed to find local optima
(stationary points)

@ Statistical theory only guarantees consistency of global optima

()

|

—— >

BB B

o L. & Wainwright '13: All stationary points of £,(3) 4+ px(/3) close
when nonconvexity smaller than curvature
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Measures of closeness

@ Various measures of statistical consistency

Be argmm{ Z«” (B xi, yi *l-P/\(ﬁ)}
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Measures of closeness

@ Various measures of statistical consistency

Be argmm{ Z«” (B xi, yi *l-P/\(ﬁ)}

e Estimation: HB— B*|| — 0
e Prediction: Y7 0B xi yi) — 0
e Variable selection: supp(g) — supp(5*)
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Measures of closeness

@ Various measures of statistical consistency

Be argmm{ Zﬁ (B xi, yi *l-P/\(ﬁ)}

Estimation: HE— B*|| — 0
Prediction: 157 | ﬁ(g; X, ¥i) = 0
e Variable selection: supp(B) — supp(3*)

Interested in cases where ¢ and p) possibly nonconvex
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Estimation /prediction consistency

o Composite objective function

IBll.<R

B earg min {cn(ﬁ>+zm(ﬁj)}
j=1
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Estimation /prediction consistency

o Composite objective function

IBll.<R

B €arg min {En(ﬁ) + ZPA(BJ)}
=1

e L, satisfies restricted strong convexity with curvature «

@ py has bounded subgradient at 0, and py(t) + ut? convex
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Estimation /prediction consistency

Po-Ling Loh (UW-Madison) (Non)convex M-estimation Aug 15, 2018 15 / 39

Composite objective function

IBll.<R

P
seon g {00 o)

j=1
L, satisfies restricted strong convexity with curvature «
px has bounded subgradient at 0, and py(t) + ut? convex

L. & Wainwright '13: All stationary points of £,(/3) 4+ pa(B) close
when a > p



Geometric intuition

o Population-level convexity, finite-sample nonconvexity

function view gradient view

Po-Ling Loh (UW-Madison) (Non)convex M-estimation Aug 15, 2018



Geometric intuition

o Population-level convexity, finite-sample nonconvexity

function view gradient view

@ Population-level objective L strongly convex, oo > p
@ RSC quantifies convergence rate of VL, — VL
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More formally

: >

BB
@ Stationary points statistically indistinguishable from global optima
<V£n(§) + VP/\(E)a B - 5) >0, V3 feasible
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More formally

} >

BB*B

@ Stationary points statistically indistinguishable from global optima

(VL(B) + Vpr(B), B—B) >0, V[ feasible

@ Nonasymptotic rates: For A =< \/"’% and R =< %

klogp

~ statistical error

1B =82 <c
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Technical conditions

@ Requirements on loss and regularizer to ensure consistency of
stationary points
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Technical conditions

@ Requirements on loss and regularizer to ensure consistency of
stationary points
o Restricted strong convexity of L,
e Bound on nonconvexity of py
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Technical conditions

@ Requirements on loss and regularizer to ensure consistency of
stationary points

o Restricted strong convexity of L,
e Bound on nonconvexity of py

@ “Oracle” result under additional condition on py
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Conditions on L,

o Restricted strong convexity (Negahban et al. '12):
ol A3~ TeER AR, VA2 < r

n

VL, (B*+A)=VL,(B"), A) >
< (/8 ) (ﬂ ) > CM”AHZ_T\/@HAHI’ O.W.

RN
\\\x\\\\\:\\\ N
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N
N
AR
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Conditions on L,

o Restricted strong convexity (Negahban et al. '12):

|
allAlf — 722 AR, V[All <r

n

VL, (B*+A)=VL,(B"), A) >
< (/8 ) (B ) ) CMHAHZ_T\/@HAHI’ O.W.

@ Holds for various convex/nonconvex losses:
e OLS & corrected OLS for linear regression, log likelihood for GLMs
e Huber loss for robust regression
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Conditions on p)

e Focus on amenable regularizers py(3) = Z}’zl pA(B;) satisfying:
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Conditions on p)

e Focus on amenable regularizers py(3) = Zf:l pA(B;) satisfying:

px(0) = 0, symmetric around 0

Nondecreasing on R*

s ’”—t(t) nonincreasing on R™

ga(t) := A|t| — pa(t) differentiable everywhere
pa(t) + pt? convex for some p1 > 0
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Conditions on p)

e Focus on amenable regularizers py(3) = Zf:l pA(B;) satisfying:

px(0) = 0, symmetric around 0

Nondecreasing on R*

s ’”—t(t) nonincreasing on R™

ga(t) := A|t| — pa(t) differentiable everywhere
pa(t) + pt? convex for some p1 > 0

p\(t) =0 for t > 4\, for some v >0
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Conditions on p)

e Focus on amenable regularizers py(3) = Z}’:l pA(B;) satisfying:

px(0) = 0, symmetric around 0

Nondecreasing on R*

s ’”—t(t) nonincreasing on R™

ga(t) := A|t| — pa(t) differentiable everywhere
pa(t) + pt? convex for some p1 > 0

p\(t) =0 for t > 4\, for some v >0

o Examples:

e p-amenable: /1, SCAD, MCP, LSP
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Conditions on p)

e Focus on amenable regularizers py(3) = Z}’:l pA(B;) satisfying:

px(0) = 0, symmetric around 0

Nondecreasing on R*

s ’”—t(t) nonincreasing on R™

ga(t) := A|t| — pa(t) differentiable everywhere
pa(t) + pt? convex for some p1 > 0

p\(t) =0 for t > 4\, for some v >0

o Examples:

e p-amenable: /1, SCAD, MCP, LSP
o (ft,v)-amenable: SCAD, MCP
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Conditions on p)

e Focus on amenable regularizers py(3) = Z}’:l pA(B;) satisfying:

px(0) = 0, symmetric around 0

Nondecreasing on R*

s ’”—t(t) nonincreasing on R™

ga(t) := A|t| — pa(t) differentiable everywhere
pa(t) + pt? convex for some p1 > 0

p\(t) =0 for t > 4\, for some v >0

o Examples:

e p-amenable: /1, SCAD, MCP, LSP
o (ft,v)-amenable: SCAD, MCP
o Neither: capped-/1, bridge penalty (¢,,0 < ¢ < 1)
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Alternative regularizers

@ Various nonconvex regularizers in literature (Fan & Li '01, Zhang '10, etc.)

4 :
—SCAD
3.5} —MCP 1
_Iq
3r capped I1 1
2.5¢ _|1 1
2
e N e
1k i
0.51 ]
-4 -2 0 2 4
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Statistical consistency

® Regularized M-estimator

~

pearg min {L£,(5)+pa(P)},

IBIl<R

loss function satisfies (v, 7)-RSC and regularizer is ;-amenable
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Statistical consistency

® Regularized M-estimator

Bearg min {L,(B)+ pr(8)},

Bl <R
loss function satisfies (v, 7)-RSC and regularizer is ;-amenable

Theorem (L. & Wainwright '13)

Suppose R is chosen s.t. 3* is feasible, and \ satisfies

max{HVE,,(B*)HOO, a,/"’%} <232

Po-Ling Loh (UW-Madison) (Non)convex M-estimation Aug 15, 2018 22 /39



Statistical consistency

® Regularized M-estimator

Bearg min {L,(B)+ pr(8)},

Bl <R
loss function satisfies (v, 7)-RSC and regularizer is ;-amenable

Theorem (L. & Wainwright '13)

Suppose R is chosen s.t. 3* is feasible, and \ satisfies

max{HVE,,(B*)HOO, a,/"’%} <232

For n > i—fRz log p, any stationary point E satisfies

MWk

||§— B2 3 a——u where k = ||5%||o-

Po-Ling Loh (UW-Madison)
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More formally

} >

BB*B

@ Stationary points statistically indistinguishable from global optima

(VL(B) + Vpr(B), B—B) >0, V[ feasible

@ Nonasymptotic rates: For A =< \/"’% and R =< %

klogp

~ statistical error

1B =82 <c
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e High-dimensional robust regression
@ Statistical consistency
@ Asymptotic normality
@ Two-step M-estimators
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Robust regression functions

@ Linear model:
yi=x; B* + ¢

Heavy-tailed distribution on ¢; and/or outlier contamination
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Robust regression functions

@ Linear model:
yi=x; B* + ¢

Heavy-tailed distribution on ¢; and/or outlier contamination

@ Use M-estimator

B € arg mln{ Z[(XTB Vi }
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Classes of loss functions

e Bounded ¢’ limits influence of outliers:
T((1—t)F + td(x,)) — T(F
(o) T F) = tim L0 D) = T(F)
t—0+ t
X eI(XT/B _y)X

where F ~ Fg and T minimizes M-estimator
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Classes of loss functions

e Bounded /' limits influence of outliers:
T((1—t)F+tdy,)— T(F
F((x,y); T, F) = lim L—1) ) = T(F)
t—0t t
o L(xT 8 —y)x
where F ~ Fg and T minimizes M-estimator
@ Redescending M-estimators have finite rejection point:

!'(u) =0, for |u| > ¢

U(x)
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Classes of loss functions

e Bounded /' limits influence of outliers:
T((1—t)F+tdy,)— T(F
F((x,y); T, F) = lim L—1) ) = T(F)
t—0t t
o L(xT 8 —y)x
where F ~ Fg and T minimizes M-estimator
@ Redescending M-estimators have finite rejection point:

!'(u) =0, for |u| > ¢

U(x)

@ But bad for optimization!!
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High-dimensional M-estimators

o Natural idea: For p > n, use regularized version:

B € argmin {1 ;é(xfﬁ —yi)+ Auﬁul}
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High-dimensional M-estimators

o Natural idea: For p > n, use regularized version:
1 n
S i — l Ts— fi A
B argmﬁm{n; (7 B —yi) + HBHl}
1=

Complications:
@ Optimization for nonconvex £7

@ Statistical theory? Are certain losses provably better than others?
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Overview of results

@ When ||/||» < C, global optima of high-dimensional M-estimator
satisfy

~ kl
1B B2 < €y =22,

regardless of distribution of ¢;
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Overview of results

@ When ||/||» < C, global optima of high-dimensional M-estimator
satisfy

~ kl
1B -8l < €y —2F

)

regardless of distribution of ¢;

@ Compare to Lasso theory: Requires sub-Gaussian €;'s

Po-Ling Loh (UW-Madison) (Non)convex M-estimation Aug 15, 2018



Overview of results

@ When ||/||» < C, global optima of high-dimensional M-estimator
satisfy

~ kl
1B B2 < €y =22,

regardless of distribution of ¢;
@ Compare to Lasso theory: Requires sub-Gaussian €;'s

o If ¢(u) is locally convex/smooth for |u| < r, any local optima within
radius cr of 5* satisfy

15— 6"l < €'y <182
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Overview of results

@ When ||/||» < C, global optima of high-dimensional M-estimator
satisfy

klogp
n 9y

13— B*l2< C

regardless of distribution of ¢;

@ Compare to Lasso theory: Requires sub-Gaussian €;'s

o If ¢(u) is locally convex/smooth for |u| < r, any local optima within
radius cr of 5* satisfy

15— 6"l < €'y <182

@ Local optima may be obtained via two-step algorithm
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Theoretical insight

@ Lasso analysis (e.g., van de Geer '07, Bickel et al. '08):

~ . 1
< argmin { ~lly = XBI3 -+ Alal }
£a(8)
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Theoretical insight

@ Lasso analysis (e.g., van de Geer '07, Bickel et al. '08):

~

(1
< argmin { ~lly = XBI3 -+ Alal }
£a(8)

-~

e Rearranging basic inequality L,(8) < Ln(5*) and assuming
Az 2| X
- n

, obtain
o0

1B = B7[l2 < exVk
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Theoretical insight

@ Lasso analysis (e.g., van de Geer '07, Bickel et al. '08):

~ . 1
5 € argmin { lly = X813 + Bl }

£a(8)

-~

e Rearranging basic inequality L,(8) < Ln(5*) and assuming

A= 2| x| obtain

o0

1B = B7[l2 < exVk

@ Sub-Gaussian assumptions on x;'s and ¢;'s provide O ( k"f”)

bounds, minimax optimal
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Theoretical insight

. . . X7 ()
e Key observation: For general loss function, if A > 2 ||=———

..
obtain

18 = B7ll> < eAVk
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Theoretical insight

Xfe)

o Key observation: For general loss function, if A > 2 H ‘
e.9]
obtain

18 = B7ll> < eAVk

@ /() sub-Gaussian whenever ¢’ bounded
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Theoretical insight

. . . X7 ()
e Key observation: For general loss function, if A > 2 ||=———

..
obtain

18 = B7ll> < eAVk

@ /() sub-Gaussian whenever ¢’ bounded
= can achieve estimation error

~ kl
1B = B7]la < ¢y —22,

n

without assuming €; is sub-Gaussian
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Local statistical consistency

@ Local RSC condition: For A := 1 — 5,

lo
(VLa(Br) = VLa(B2), B) = a B3-S a3,

T
SRR
RN

Po-Ling Loh (UW-Madison) (Non)convex M-estimation

Vg =82 <r

Aug 15, 2018
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Local statistical consistency

@ Local RSC condition: For A := 1 — 5,

log p «
(VL(B1) = VLi(B2), A) > aIIAHﬁ—TTIIAIIi VIBi—=B%[2 < r

DI
wd - NN A

S5
N XS
AN

@ Only requires restricted curvature within constant-radius region

around 3*

Aug 15, 2018 31/39
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Consistency of local stationary points
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Consistency of local stationary points

Theorem (L. '15)

Suppose L, satisfies a-local RSC and p) is p-amenable, with o > .
any

stationary point B s.t. ||B— B*||2 < r satisfies

15— Bl 3 20K
1
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Second-order considerations

@ Question: If any bounded-derivative ¢ works for heavy-tailed
distributions, why not always use Huber? LAD?
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Second-order considerations

@ Question: If any bounded-derivative ¢ works for heavy-tailed
distributions, why not always use Huber? LAD?

e Answer: Has to do with (asymptotic) efficiency
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Second-order considerations

@ Question: If any bounded-derivative ¢ works for heavy-tailed
distributions, why not always use Huber? LAD?

e Answer: Has to do with (asymptotic) efficiency

@ In low-dimensional settings, MLE maximally efficient with respect to
variance
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Second-order considerations

Question: If any bounded-derivative ¢ works for heavy-tailed
distributions, why not always use Huber? LAD?

e Answer: Has to do with (asymptotic) efficiency

@ In low-dimensional settings, MLE maximally efficient with respect to
variance

o Although MLE may behave erratically when 2 — (0, 1], can achieve
simple asymptotic normality results under sparsity assumption, via
oracle property
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Asymptotic efficiency

1,-error for robust regression losses variance for robust regression losses

i
)

empirical variance of first component

w15 16
ni(k log p) ni(k log p)

@ /y-error and empirical variance of M-estimators when errors follow
Cauchy distribution (SCAD regularizer)
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How to obtain local efficient solutions?

@ Goal: Nonconvex regularized M-estimator such that ¢ satisfies
a-local RSC
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How to obtain local efficient solutions?

@ Goal: Nonconvex regularized M-estimator such that ¢ satisfies
a-local RSC

@ Target: Locate stationary point within radius r of 5*

Descending -functions are tricky, especially when the
starting values for the iterations are non-robust. ... It is
therefore preferable to start with a monotone 1, iterate to
death, and then append a few (1 or 2) iterations with the
nonmonotone 1. — Huber 1981, pp. 191-192
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Two-step algorithm (L. 15)

@ Use composite gradient descent starting from close initialization
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@ Use composite gradient descent starting from close initialization

o Two-step M-estimator: Finds local stationary points of nonconvex,
robust loss + (u,y)-amenable penalty
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Two-step algorithm (L. 15)

@ Use composite gradient descent starting from close initialization

o Two-step M-estimator: Finds local stationary points of nonconvex,
robust loss + (u,y)-amenable penalty

Algorithm

© Run composite gradient descent on convex, robust loss + ¢1-penalty
until convergence, output Sy
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@ Use composite gradient descent starting from close initialization

o Two-step M-estimator: Finds local stationary points of nonconvex,
robust loss + (u,y)-amenable penalty

Algorithm

© Run composite gradient descent on convex, robust loss + ¢1-penalty
until convergence, output Sy

@ Run composite gradient descent on nonconvex, robust loss +
(1, v)-amenable penalty, input 8% = By
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Two-step algorithm (L. 15)

@ Use composite gradient descent starting from close initialization

o Two-step M-estimator: Finds local stationary points of nonconvex,
robust loss + (u,y)-amenable penalty

Algorithm

© Run composite gradient descent on convex, robust loss + ¢1-penalty
until convergence, output Sy

@ Run composite gradient descent on nonconvex, robust loss +
(1, v)-amenable penalty, input 8% = By

@ Theoretical guarantees on (rate of) convergence to optimal point
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Summary of two-step M-estimator

o Output is computationally and statistically efficient:
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Summary of two-step M-estimator

o Output is computationally and statistically efficient:

o Computational guarantee on rate of convergence in each step of
M-estimation algorithm

@ Statistical guarantee on asymptotic efficiency of estimator (assuming
B-min condition and (f,y)-amenability)
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@ Theory for nonconvex regularized M-estimators
e Global RSC condition = all stationary points within statistical error
of g*
o Local RSC condition = stationary points in local region within
statistical error of 3*
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@ Theory for nonconvex regularized M-estimators

e Global RSC condition = all stationary points within statistical error
of g*

o Local RSC condition = stationary points in local region within
statistical error of 3*

@ Consequences for high-dimensional robust regression estimators
e Consistency under relaxed distributional assumptions when ¢’ bounded
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@ Theory for nonconvex regularized M-estimators

e Global RSC condition = all stationary points within statistical error
of B*

o Local RSC condition = stationary points in local region within
statistical error of 3*

@ Consequences for high-dimensional robust regression estimators

e Consistency under relaxed distributional assumptions when ¢’ bounded

o Oracle estimator with (u,y)-amenable regularizer
= asymptotic efficiency

o Two-step M-estimator produces local oracle solutions
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Thank you!
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