Robust estimation via (non)convex M-estimation

Po-Ling Loh

University of Wisconsin - Madison Departments of ECE & Statistics

Workshop on computational efficiency and high-dimensional robust statistics TTI Chicago

August 15, 2018

1 Regularized *M*-estimators

- Statistical *M*-estimation
- Nonconvexity
- Consistency of local optima

2 High-dimensional robust regression

- Statistical consistency
- Asymptotic normality
- Two-step *M*-estimators

1 Regularized *M*-estimators

- Statistical *M*-estimation
- Nonconvexity
- Consistency of local optima

High-dimensional robust regression

- Statistical consistency
- Asymptotic normality
- Two-step *M*-estimators

• **Prediction/regression problem:** Observe $\{(x_i, y_i)\}_{i=1}^n$, estimate

$$\beta^* = \arg \min_{\beta \in \mathbb{R}^p} \mathbb{E}[\ell(\beta; x_i, y_i)], \qquad x_i \in \mathbb{R}^p, \quad y_i \in \mathbb{R}$$

• **Prediction/regression problem:** Observe $\{(x_i, y_i)\}_{i=1}^n$, estimate

$$\beta^* = \arg \min_{\beta \in \mathbb{R}^p} \mathbb{E}[\ell(\beta; x_i, y_i)], \qquad x_i \in \mathbb{R}^p, \quad y_i \in \mathbb{R}$$

• Statistical *M*-estimator:

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(\beta; x_i, y_i) \right\}$$

in high dimensions, may be ill-conditioned, large solution space

• **Prediction/regression problem:** Observe $\{(x_i, y_i)\}_{i=1}^n$, estimate

$$\beta^* = \arg \min_{\beta \in \mathbb{R}^p} \mathbb{E}[\ell(\beta; x_i, y_i)], \qquad x_i \in \mathbb{R}^p, \quad y_i \in \mathbb{R}$$

• Regularized *M*-estimator:

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(\beta; x_i, y_i)}_{\mathcal{L}_n(\beta)} + \rho_{\lambda}(\beta) \right\}$$

• Linear model: $y_i = x_i^T \beta^* + \epsilon_i, \qquad \|\beta^*\|_0 \le k$

- Linear model: $y_i = x_i^T \beta^* + \epsilon_i, \qquad \|\beta^*\|_0 \le k$
- Low-dimensional *M*-estimator:

$$\widehat{\beta}_{\mathsf{OLS}} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 \right\}$$

- Linear model: $y_i = x_i^T \beta^* + \epsilon_i, \qquad \|\beta^*\|_0 \le k$
- Low-dimensional *M*-estimator:

$$\widehat{\beta}_{\mathsf{OLS}} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\mathsf{T}} \beta)^2 \right\} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}} \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} y_i x_i \right)$$

- Linear model: $y_i = x_i^T \beta^* + \epsilon_i, \qquad \|\beta^*\|_0 \le k$
- Low-dimensional *M*-estimator:

$$\widehat{\beta}_{\mathsf{OLS}} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 \right\} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i^T \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} y_i x_i \right)$$

• High-dimensional regularized *M*-estimator:

$$\widehat{\beta}_{\mathsf{Lasso}} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \|\beta\|_1 \right\}$$

• May arise in loss or regularizer

- May arise in loss or regularizer
- Nonconvex loss used to correct bias, increase efficiency

- May arise in loss or regularizer
- Nonconvex loss used to correct bias, increase efficiency
- Nonconvex regularizer used to reduce bias, achieve oracle result

• Model:

$$y_i = x_i^T \beta^* + \epsilon_i$$

observe $\{(z_i, y_i)\}_{i=1}^n$, infer β^*

• Model:

$$y_i = x_i^T \beta^* + \epsilon_i$$

observe
$$\{(z_i, y_i)\}_{i=1}^n$$
, infer β^*

• OLS estimator

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (z_i^{\mathsf{T}} \beta - y_i)^2 + \lambda \|\beta\|_1 \right\}$$

statistically inconsistent

• L. & Wainwright '12 propose natural method for correcting loss for linear regression:

$$\begin{split} \widehat{\beta}_{\mathsf{OLS}} &\in \arg\min_{\beta} \left\{ \frac{1}{2} \beta^T \frac{\mathbf{X}^T \mathbf{X}}{n} \beta - \frac{\mathbf{y} \mathbf{X}^T}{n} \beta + \rho_{\lambda}(\beta) \right\} \\ \widehat{\beta}_{\mathsf{corr}} &\in \arg\min_{\beta} \left\{ \frac{1}{2} \beta^T \widehat{\Gamma} \beta - \widehat{\gamma}^T \beta + \rho_{\lambda}(\beta) \right\} \end{split}$$

 $(\widehat{\Gamma}, \widehat{\gamma})$ estimators for $(Cov(x_i), Cov(x_i, y_i))$ based on $\{(z_i, y_i)\}_{i=1}^n$

• Additive noise: Z = X + W, use

$$\widehat{\Gamma} = \frac{Z^T Z}{n} - \Sigma_w, \qquad \widehat{\gamma} = \frac{Z^T y}{n}$$

• However, corrected objective nonconvex:

$$\widehat{\beta}_{\mathsf{corr}} \in \arg\min_{\beta} \left\{ \frac{1}{2} \beta^{\mathsf{T}} \left(\frac{Z^{\mathsf{T}} Z}{n} - \Sigma_{\mathsf{w}} \right) \beta - \frac{y^{\mathsf{T}} Z}{n} \beta + \rho_{\lambda}(\beta) \right\}$$

• Additive noise: Z = X + W, use

$$\widehat{\Gamma} = \frac{Z^T Z}{n} - \Sigma_w, \qquad \widehat{\gamma} = \frac{Z^T y}{n}$$

• However, corrected objective nonconvex:

$$\widehat{\beta}_{\mathsf{corr}} \in \arg\min_{\beta} \left\{ \frac{1}{2} \beta^{\mathsf{T}} \left(\frac{Z^{\mathsf{T}} Z}{n} - \Sigma_{\mathsf{w}} \right) \beta - \frac{y^{\mathsf{T}} Z}{n} \beta + \rho_{\lambda}(\beta) \right\}$$

• Fortunately, local optima have good properties

 $\bullet~\ell_1$ is "convexified" version of ℓ_0

 $\bullet~\ell_1$ is "convexified" version of ℓ_0

 \bullet But ℓ_1 penalizes larger coefficients more, causes solution bias

Alternative regularizers

• Various nonconvex regularizers in literature (Fan & Li '01, Zhang '10, etc.)

Empirical benefits

• Nonconvex regularizers show **significant improvement** (Breheny & Huang '11)

Local vs. global optima

- Optimization algorithms only guaranteed to find *local optima* (stationary points)
- Statistical theory only guarantees consistency of global optima

Local vs. global optima

- Optimization algorithms only guaranteed to find *local optima* (stationary points)
- Statistical theory only guarantees consistency of global optima

• L. & Wainwright '13: All stationary points of $\mathcal{L}_n(\beta) + \rho_\lambda(\beta)$ close when nonconvexity smaller than curvature

• Various measures of statistical consistency

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(\beta; x_i, y_i) + \rho_{\lambda}(\beta) \right\}$$

• Various measures of statistical consistency

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(\beta; x_i, y_i) + \rho_{\lambda}(\beta) \right\}$$

- Estimation: $\|\widehat{\beta} \beta^*\| \to 0$
- **Prediction:** $\frac{1}{n} \sum_{i=1}^{n} \ell(\widehat{\beta}; x_i, y_i) \to 0$
- Variable selection: $supp(\widehat{\beta}) \rightarrow supp(\beta^*)$

• Various measures of statistical consistency

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(\beta; x_i, y_i) + \rho_{\lambda}(\beta) \right\}$$

- Estimation: $\|\widehat{\beta} \beta^*\| \to 0$
- **Prediction:** $\frac{1}{n} \sum_{i=1}^{n} \ell(\widehat{\beta}; x_i, y_i) \to 0$
- Variable selection: $supp(\widehat{\beta}) \rightarrow supp(\beta^*)$
- Interested in cases where ℓ and ρ_{λ} possibly *nonconvex*

Estimation/prediction consistency

• Composite objective function

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \le R} \left\{ \mathcal{L}_n(\beta) + \sum_{j=1}^p \rho_\lambda(\beta_j) \right\}$$

• Composite objective function

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \le R} \left\{ \frac{\mathcal{L}_n(\beta)}{\sum_{j=1}^p \rho_\lambda(\beta_j)} \right\}$$

- \mathcal{L}_n satisfies **restricted strong convexity** with curvature α
- ho_λ has bounded subgradient at 0, and $ho_\lambda(t)+\mu t^2$ convex

• Composite objective function

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \le R} \left\{ \frac{\mathcal{L}_n(\beta)}{\sum_{j=1}^p \rho_\lambda(\beta_j)} \right\}$$

- \mathcal{L}_n satisfies restricted strong convexity with curvature lpha
- ho_{λ} has bounded subgradient at 0, and $ho_{\lambda}(t) + \mu t^2$ convex
- L. & Wainwright '13: All stationary points of L_n(β) + ρ_λ(β) close when α > μ

Geometric intuition

• Population-level convexity, finite-sample nonconvexity

• Population-level convexity, finite-sample nonconvexity

- Population-level objective \mathcal{L} strongly convex, $\alpha > \mu$
- RSC quantifies convergence rate of $\nabla \mathcal{L}_n \longrightarrow \nabla \mathcal{L}$

More formally

• Stationary points statistically indistinguishable from global optima $\langle \nabla \mathcal{L}_n(\widetilde{\beta}) + \nabla \rho_\lambda(\widetilde{\beta}), \ \beta - \widetilde{\beta} \rangle \ge 0, \quad \forall \beta \text{ feasible}$

More formally

• Stationary points statistically indistinguishable from global optima $\langle \nabla \mathcal{L}_n(\widetilde{\beta}) + \nabla \rho_\lambda(\widetilde{\beta}), \beta - \widetilde{\beta} \rangle \ge 0, \quad \forall \beta \text{ feasible}$

• Nonasymptotic rates: For $\lambda \asymp \sqrt{\frac{\log p}{n}}$ and $R \asymp \frac{1}{\lambda}$,

$$\|\widetilde{eta} - eta^*\|_2 \leq c \sqrt{rac{k\log p}{n}} pprox$$
 statistical error

• Requirements on loss and regularizer to ensure consistency of stationary points

- Requirements on loss and regularizer to ensure consistency of stationary points
 - Restricted strong convexity of \mathcal{L}_n
 - Bound on nonconvexity of ρ_{λ}
- Requirements on loss and regularizer to ensure consistency of stationary points
 - Restricted strong convexity of \mathcal{L}_n
 - Bound on nonconvexity of ρ_{λ}
- "Oracle" result under additional condition on ρ_{λ}

Conditions on \mathcal{L}_n

• Restricted strong convexity (Negahban et al. '12):

$$\langle \nabla \mathcal{L}_n(\beta^* + \Delta) - \nabla \mathcal{L}_n(\beta^*), \Delta \rangle \geq \begin{cases} \alpha \|\Delta\|_2^2 - \tau \frac{\log p}{n} \|\Delta\|_1^2, & \forall \|\Delta\|_2 \leq r \\ \alpha \|\Delta\|_2 - \tau \sqrt{\frac{\log p}{n}} \|\Delta\|_1, & \text{o.w.} \end{cases}$$

Conditions on \mathcal{L}_n

• Restricted strong convexity (Negahban et al. '12):

$$\langle \nabla \mathcal{L}_n(\beta^* + \Delta) - \nabla \mathcal{L}_n(\beta^*), \Delta \rangle \geq \begin{cases} \alpha \|\Delta\|_2^2 - \tau \frac{\log p}{n} \|\Delta\|_1^2, & \forall \|\Delta\|_2 \leq r \\ \alpha \|\Delta\|_2 - \tau \sqrt{\frac{\log p}{n}} \|\Delta\|_1, & \text{o.w.} \end{cases}$$

- Holds for various convex/nonconvex losses:
 - OLS & corrected OLS for linear regression, log likelihood for GLMs
 - Huber loss for robust regression

Po-Ling Loh (UW-Madison)

- Focus on *amenable* regularizers $\rho_{\lambda}(\beta) = \sum_{j=1}^{p} \rho_{\lambda}(\beta_j)$ satisfying:
 - $ho_{\lambda}(0) = 0$, symmetric around 0
 - $\bullet~\mbox{Nondecreasing}$ on \mathbb{R}^+
 - $t\mapsto rac{
 ho_{\lambda}(t)}{t}$ nonincreasing on \mathbb{R}^+
 - $q_{\lambda}(t) := \lambda |t|
 ho_{\lambda}(t)$ differentiable everywhere
 - $ho_{\lambda}(t) + \mu t^2$ convex for some $\mu > 0$

- Focus on *amenable* regularizers $\rho_{\lambda}(\beta) = \sum_{j=1}^{p} \rho_{\lambda}(\beta_j)$ satisfying:
 - $ho_{\lambda}(0) = 0$, symmetric around 0
 - $\bullet~\mbox{Nondecreasing}$ on \mathbb{R}^+
 - $t \mapsto \frac{\rho_{\lambda}(t)}{t}$ nonincreasing on \mathbb{R}^+
 - $q_{\lambda}(t) := \lambda |t|
 ho_{\lambda}(t)$ differentiable everywhere
 - $ho_{\lambda}(t) + \mu t^2$ convex for some $\mu > 0$
 - $ho_{\lambda}'(t) = 0$ for $t \geq \gamma \lambda$, for some $\gamma > 0$

- $ho_{\lambda}(0) = 0$, symmetric around 0
- $\bullet~\mbox{Nondecreasing}$ on \mathbb{R}^+
- $t\mapsto rac{
 ho_{\lambda}(t)}{t}$ nonincreasing on \mathbb{R}^+
- $q_{\lambda}(t) := \lambda |t|
 ho_{\lambda}(t)$ differentiable everywhere
- $ho_{\lambda}(t) + \mu t^2$ convex for some $\mu > 0$
- $ho_{\lambda}'(t) = 0$ for $t \geq \gamma \lambda$, for some $\gamma > 0$
- Examples:
 - μ -amenable: ℓ_1 , SCAD, MCP, LSP

- $ho_{\lambda}(0) = 0$, symmetric around 0
- $\bullet~\mbox{Nondecreasing}$ on \mathbb{R}^+
- $t\mapsto rac{
 ho_{\lambda}(t)}{t}$ nonincreasing on \mathbb{R}^+
- $q_{\lambda}(t) := \lambda |t|
 ho_{\lambda}(t)$ differentiable everywhere
- $\rho_{\lambda}(t) + \mu t^2$ convex for some $\mu > 0$
- $ho_{\lambda}'(t) = 0$ for $t \geq \gamma \lambda$, for some $\gamma > 0$
- Examples:
 - μ -amenable: ℓ_1 , SCAD, MCP, LSP
 - (μ, γ) -amenable: SCAD, MCP

- $ho_{\lambda}(0) = 0$, symmetric around 0
- $\bullet~\mbox{Nondecreasing}$ on \mathbb{R}^+
- $t\mapsto rac{
 ho_{\lambda}(t)}{t}$ nonincreasing on \mathbb{R}^+
- $q_{\lambda}(t) := \lambda |t|
 ho_{\lambda}(t)$ differentiable everywhere
- $\rho_{\lambda}(t) + \mu t^2$ convex for some $\mu > 0$
- $ho_{\lambda}'(t) = 0$ for $t \geq \gamma \lambda$, for some $\gamma > 0$
- Examples:
 - μ -amenable: ℓ_1 , SCAD, MCP, LSP
 - (μ, γ) -amenable: SCAD, MCP
 - Neither: capped- ℓ_1 , bridge penalty $(\ell_q, 0 < q < 1)$

Alternative regularizers

• Various nonconvex regularizers in literature (Fan & Li '01, Zhang '10, etc.)

Statistical consistency

• Regularized *M*-estimator

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \leq R} \left\{ \mathcal{L}_n(\beta) + \rho_\lambda(\beta) \right\},\,$$

loss function satisfies (α, τ)-RSC and regularizer is μ -amenable

Statistical consistency

• Regularized *M*-estimator

$$\widehat{\beta} \in \arg \min_{\|\beta\|_1 \leq R} \left\{ \mathcal{L}_n(\beta) + \rho_\lambda(\beta) \right\},\$$

loss function satisfies (α, τ)-RSC and regularizer is μ -amenable

Theorem (L. & Wainwright '13)

Suppose R is chosen s.t. β^* is feasible, and λ satisfies

$$\max\left\{\|\nabla \mathcal{L}_n(\beta^*)\|_{\infty}, \ \alpha \sqrt{\frac{\log p}{n}}\right\} \precsim \lambda \precsim \frac{\alpha}{R}.$$

Statistical consistency

• Regularized *M*-estimator

$$\widehat{\beta} \in \arg \min_{\|\beta\|_1 \leq R} \left\{ \mathcal{L}_n(\beta) + \rho_\lambda(\beta) \right\},\$$

loss function satisfies (α, τ)-RSC and regularizer is μ -amenable

Theorem (L. & Wainwright '13)

Suppose R is chosen s.t. β^* is feasible, and λ satisfies

$$\max\left\{\|\nabla \mathcal{L}_n(\beta^*)\|_{\infty}, \ \alpha \sqrt{\frac{\log p}{n}}\right\} \precsim \lambda \precsim \frac{\alpha}{R}.$$

For $n \geq \frac{C\tau^2}{\alpha^2} R^2 \log p$, any stationary point $\widetilde{\beta}$ satisfies

$$\|\widetilde{\beta} - \beta^*\|_2 \precsim \frac{\lambda\sqrt{k}}{\alpha - \mu}, \quad \text{where } k = \|\beta^*\|_0.$$

More formally

• Stationary points statistically indistinguishable from global optima $\langle \nabla \mathcal{L}_n(\widetilde{\beta}) + \nabla \rho_\lambda(\widetilde{\beta}), \beta - \widetilde{\beta} \rangle \ge 0, \quad \forall \beta \text{ feasible}$

• Nonasymptotic rates: For $\lambda \asymp \sqrt{\frac{\log p}{n}}$ and $R \asymp \frac{1}{\lambda}$,

$$\|\widetilde{eta} - eta^*\|_2 \leq c \sqrt{rac{k\log p}{n}} pprox$$
 statistical error

Regularized *M*-estimators

- Statistical *M*-estimation
- Nonconvexity
- Consistency of local optima

2 High-dimensional robust regression

- Statistical consistency
- Asymptotic normality
- Two-step *M*-estimators

• Linear model:

$$y_i = x_i^T \beta^* + \epsilon_i$$

Heavy-tailed distribution on ϵ_i and/or outlier contamination

• Linear model:

$$y_i = x_i^T \beta^* + \epsilon_i$$

Heavy-tailed distribution on ϵ_i and/or outlier contamination

• Use *M*-estimator

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(x_{i}^{\mathsf{T}}\beta - y_{i}) \right\}$$

Classes of loss functions

• Bounded ℓ' limits influence of outliers: $IF((x, y); T, F) = \lim_{t \to 0^+} \frac{T((1 - t)F + t\delta_{(x, y)}) - T(F)}{t}$ $\propto \ell'(x^T\beta - y)x$

where $F \sim F_{\beta}$ and T minimizes *M*-estimator

Classes of loss functions

• **Bounded** ℓ' limits influence of outliers:

$$IF((x,y); T, F) = \lim_{t \to 0^+} \frac{T((1-t)F + t\delta_{(x,y)}) - T(F)}{t}$$
$$\propto \ell'(x^T\beta - y)x$$

where $F \sim F_{\beta}$ and T minimizes *M*-estimator

• Redescending *M*-estimators have finite rejection point:

$$\ell'(u) = 0, \quad \text{for } |u| \ge c$$

Classes of loss functions

• **Bounded** ℓ' limits influence of outliers:

$$IF((x,y); T, F) = \lim_{t \to 0^+} \frac{T((1-t)F + t\delta_{(x,y)}) - T(F)}{t}$$
$$\propto \ell'(x^T\beta - y)x$$

where $F \sim F_{\beta}$ and T minimizes *M*-estimator

• Redescending *M*-estimators have finite rejection point:

$$\ell'(u) = 0, \quad \text{for } |u| \ge c$$

• But bad for optimization!!

Po-Ling Loh (UW-Madison)

• **Natural idea:** For *p* > *n*, use regularized version:

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(x_i^T \beta - y_i) + \lambda \|\beta\|_1 \right\}$$

• **Natural idea:** For *p* > *n*, use regularized version:

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(x_{i}^{\mathsf{T}}\beta - y_{i}) + \lambda \|\beta\|_{1} \right\}$$

Complications:

- Optimization for nonconvex ℓ ?
- Statistical theory? Are certain losses provably better than others?

When ||ℓ'||∞ < C, global optima of high-dimensional *M*-estimator satisfy

$$\|\widehat{\beta} - \beta^*\|_2 \le C\sqrt{\frac{k\log p}{n}},$$

regardless of distribution of ϵ_i

When ||ℓ'||∞ < C, global optima of high-dimensional *M*-estimator satisfy

$$\|\widehat{\beta} - \beta^*\|_2 \le C\sqrt{\frac{k\log p}{n}},$$

regardless of distribution of ϵ_i

• Compare to Lasso theory: Requires sub-Gaussian ϵ_i 's

When ||ℓ'||∞ < C, global optima of high-dimensional *M*-estimator satisfy

$$\|\widehat{\beta} - \beta^*\|_2 \le C\sqrt{\frac{k\log p}{n}},$$

regardless of distribution of ϵ_i

- Compare to Lasso theory: Requires sub-Gaussian ϵ_i 's
- If ℓ(u) is *locally* convex/smooth for |u| ≤ r, any *local optima* within radius cr of β^{*} satisfy

$$\|\widetilde{\beta} - \beta^*\|_2 \le C' \sqrt{\frac{k \log p}{n}}$$

When ||ℓ'||∞ < C, global optima of high-dimensional *M*-estimator satisfy

$$\|\widehat{\beta} - \beta^*\|_2 \le C\sqrt{\frac{k\log p}{n}},$$

regardless of distribution of ϵ_i

- Compare to Lasso theory: Requires sub-Gaussian ϵ_i 's
- If ℓ(u) is *locally* convex/smooth for |u| ≤ r, any *local optima* within radius cr of β^{*} satisfy

$$\|\widetilde{\beta} - \beta^*\|_2 \le C' \sqrt{\frac{k \log p}{n}}$$

Local optima may be obtained via two-step algorithm

• Lasso analysis (e.g., van de Geer '07, Bickel et al. '08):

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \underbrace{\frac{1}{n} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}}_{\mathcal{L}_{n}(\beta)} \right\}$$

• Lasso analysis (e.g., van de Geer '07, Bickel et al. '08):

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \underbrace{\frac{1}{n} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}}_{\mathcal{L}_{n}(\beta)} \right\}$$

• Rearranging basic inequality $\mathcal{L}_n(\widehat{\beta}) \leq \mathcal{L}_n(\beta^*)$ and assuming $\lambda \geq 2 \left\| \frac{X^T \epsilon}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• Lasso analysis (e.g., van de Geer '07, Bickel et al. '08):

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \underbrace{\frac{1}{n} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}}_{\mathcal{L}_{n}(\beta)} \right\}$$

• Rearranging basic inequality $\mathcal{L}_n(\widehat{\beta}) \leq \mathcal{L}_n(\beta^*)$ and assuming $\lambda \geq 2 \left\| \frac{X^{T} \epsilon}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• Sub-Gaussian assumptions on x_i 's and ϵ_i 's provide $\mathcal{O}\left(\sqrt{\frac{k \log p}{n}}\right)$ bounds, minimax optimal

Po-Ling Loh (UW-Madison)

• Key observation: For general loss function, if $\lambda \ge 2 \left\| \frac{X^T \ell'(\epsilon)}{n} \right\|_{\infty}$, obtain $\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$ • Key observation: For general loss function, if $\lambda \ge 2 \left\| \frac{X^T \ell'(\epsilon)}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• $\ell'(\epsilon)$ sub-Gaussian whenever ℓ' bounded

• Key observation: For general loss function, if $\lambda \ge 2 \left\| \frac{X^T \ell'(\epsilon)}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• $\ell'(\epsilon)$ sub-Gaussian whenever ℓ' bounded \implies can achieve estimation error

$$\|\widehat{\beta} - \beta^*\|_2 \le c\sqrt{\frac{k\log p}{n}},$$

without assuming ϵ_i is sub-Gaussian

Local statistical consistency

• Local RSC condition: For $\Delta := \beta_1 - \beta_2$,

$$\langle \nabla \mathcal{L}_n(\beta_1) - \nabla \mathcal{L}_n(\beta_2), \Delta \rangle \ge \alpha \|\Delta\|_2^2 - \tau \frac{\log p}{n} \|\Delta\|_1^2, \quad \forall \|\beta_j - \beta^*\|_2 \le r$$

Local statistical consistency

- Local RSC condition: For $\Delta := \beta_1 \beta_2$,
 - $\langle \nabla \mathcal{L}_n(\beta_1) \nabla \mathcal{L}_n(\beta_2), \Delta \rangle \ge \alpha \|\Delta\|_2^2 \tau \frac{\log p}{n} \|\Delta\|_1^2, \quad \forall \|\beta_j \beta^*\|_2 \le r$

• Only requires restricted curvature within constant-radius region around β^{\ast}

Consistency of local stationary points

Consistency of local stationary points

Theorem (L. '15)

Suppose \mathcal{L}_n satisfies α -local RSC and ρ_{λ} is μ -amenable, with $\alpha > \mu$. Suppose (λ, R) are chosen appropriately. For $n \succeq \frac{\tau}{\alpha - \mu} k \log p$, any stationary point $\tilde{\beta}$ s.t. $\|\tilde{\beta} - \beta^*\|_2 \le r$ satisfies

$$\|\widetilde{\beta} - \beta^*\|_2 \precsim \frac{\lambda\sqrt{k}}{\alpha - \mu}.$$
• **Question:** If any bounded-derivative ℓ works for heavy-tailed distributions, why not always use Huber? LAD?

- **Question:** If any bounded-derivative ℓ works for heavy-tailed distributions, why not always use Huber? LAD?
- Answer: Has to do with (asymptotic) efficiency

- **Question:** If any bounded-derivative ℓ works for heavy-tailed distributions, why not always use Huber? LAD?
- Answer: Has to do with (asymptotic) efficiency

• In low-dimensional settings, MLE maximally efficient with respect to variance

- **Question:** If any bounded-derivative ℓ works for heavy-tailed distributions, why not always use Huber? LAD?
- Answer: Has to do with (asymptotic) efficiency

- In low-dimensional settings, MLE maximally efficient with respect to variance
- Although MLE may behave erratically when $\frac{p}{n} \rightarrow (0, 1]$, can achieve simple asymptotic normality results under *sparsity* assumption, via oracle property

Asymptotic efficiency

• ℓ_2 -error and empirical variance of *M*-estimators when errors follow Cauchy distribution (SCAD regularizer)

• Goal: Nonconvex regularized *M*-estimator such that ℓ satisfies α -local RSC

- Goal: Nonconvex regularized *M*-estimator such that ℓ satisfies α -local RSC
- Target: Locate stationary point within radius r of β^*

- **Goal:** Nonconvex regularized *M*-estimator such that ℓ satisfies α -local RSC
- **Target:** Locate stationary point within radius r of β^*

Descending ψ -functions are tricky, especially when the starting values for the iterations are non-robust.... It is therefore preferable to start with a monotone ψ , iterate to death, and then append a few (1 or 2) iterations with the nonmonotone ψ . — Huber 1981, pp. 191–192

- Use *composite gradient descent* starting from close initialization
- Two-step *M*-estimator: Finds local stationary points of nonconvex, robust loss + (μ, γ)-amenable penalty

• **Two-step** *M*-estimator: Finds local stationary points of nonconvex, robust loss + (μ, γ) -amenable penalty

Algorithm

• Run composite gradient descent on convex, robust loss + ℓ_1 -penalty until convergence, output $\hat{\beta}_H$

• **Two-step** *M*-estimator: Finds local stationary points of nonconvex, robust loss + (μ, γ) -amenable penalty

Algorithm

- Run composite gradient descent on convex, robust loss + ℓ_1 -penalty until convergence, output $\hat{\beta}_H$
- ② Run composite gradient descent on nonconvex, robust loss + (μ, γ) -amenable penalty, input $\beta^0 = \hat{\beta}_H$

• **Two-step** *M*-estimator: Finds local stationary points of nonconvex, robust loss + (μ, γ) -amenable penalty

Algorithm

- Run composite gradient descent on convex, robust loss + ℓ_1 -penalty until convergence, output $\hat{\beta}_H$
- ② Run composite gradient descent on nonconvex, robust loss + (μ, γ) -amenable penalty, input $\beta^0 = \hat{\beta}_H$
 - Theoretical guarantees on (rate of) convergence to optimal point

• Output is **computationally** and **statistically** efficient:

- Output is computationally and statistically efficient:
- Computational guarantee on rate of convergence in each step of *M*-estimation algorithm
- Statistical guarantee on asymptotic efficiency of estimator (assuming β -min condition and (μ, γ) -amenability)

- Theory for nonconvex regularized *M*-estimators
 - Global RSC condition \implies all stationary points within statistical error of β^*
 - Local RSC condition \implies stationary points in local region within statistical error of β^*

- Theory for nonconvex regularized *M*-estimators
 - Global RSC condition \implies all stationary points within statistical error of β^*
 - Local RSC condition \implies stationary points in local region within statistical error of β^*
- Consequences for high-dimensional robust regression estimators
 - $\bullet\,$ Consistency under relaxed distributional assumptions when ℓ' bounded

- Theory for nonconvex regularized *M*-estimators
 - Global RSC condition \implies all stationary points within statistical error of β^*
 - Local RSC condition \implies stationary points in local region within statistical error of β^*
- Consequences for high-dimensional robust regression estimators
 - $\bullet\,$ Consistency under relaxed distributional assumptions when ℓ' bounded
 - Oracle estimator with ($\mu,\gamma)\text{-amenable}$ regularizer
 - \implies asymptotic efficiency
 - Two-step M-estimator produces local oracle solutions

- **P. Loh** and M. J. Wainwright (2015). Regularized *M*-estimators with nonconvexity: Statistical and algorithmic theory for local optima. *Journal of Machine Learning Research.*
- **P. Loh** (2017). Statistical consistency and asymptotic normality for high-dimensional robust *M*-estimators. *Annals of Statistics.*

Thank you!