Sketching for M-Estimators and
Robust Numerical Linear Algebra

David Woodruff
CMU

Talk Outline

* Regression
— Sketching for least squares regression
— Sketching for fast robust regression

 Low Rank Approximation
— Sketching for fast SVD

— Sketching for fast robust low rank approximation

* Recent sketching/sampling work for robust problems

Linear Regression

Matrix form

Input: nxd-matrix A and a vector b=(b,,..., b,)
n is the number of examples; d is the number of
unknowns

Output: x so that Ax* and b are close

 Consider the over-constrained case, whenn *

d

Least Squares Regression

Find x* that minimizes |Ax-b|,?
AX" is the projection of b onto the column span of A
Desirable statistical properties

Closed form solution: x = (ATA)1T AT b

Sketching to Solve Least Squares Regression

How to find an approximate solution x to min, |Ax-b|, ?

Goal: output x’ for which |Ax'-b|, % (1+€) min, |Ax-b|,
with high probability

Draw S from a k x n random family of matrices, for a
value k << n

Compute S*A and S*b

Output the solution x* to min,. [(SA)x-(Sb)|,

How to Choose the Right Sketching Matrix ?

Recall: output the solution x* to min,. [(SA)x-(Sb)|,

Lots of matrices work
S is d/e2 x n matrix of i.i.d. Normal random variables
Computing S*A may be slow...

Can speed up to O(nd log n) time using Fast Johnson
Lindenstrauss transforms [Sarlos]

Not sensitive to input sparsity

Faster Sketching Matrices [CW]

Think of rows

CountSketch matrix as hash buckets

Define k x n matrix S, for k = O(d?/2)

S is really sparse: single rando chosen non-zero

entry per column

00100100
10000000
000-110-10
0-100 00 O 1

S*A computable in nnz(A) time (See also [MM,MP,NN])

Simple Proof [ANW]

Replace A with [A, b], and then show [SAXx|, = (1 £ €) |Ax|, for all x
— Can assume columns of A are orthonormal
— Can assume X is a unit vector

SAis a 6d?%/(d€?) x d matrix

Suffices to show | ATST SA— 1|, < |ATSTSA- |- & ¢

Approximate matrix product for all matrices C and D
Pr{|CSTSD — CD|:2 < [6/(5(# rows of S))] * |C|:2 [D|¢2] = 1 — &

SetC=ATand D =A

Then |A|?- = d and (# rows of S) = 6 d?%/(d¢€?)

Talk Outline

* Regression
— Sketching for least squares regression
— Sketching for fast robust regression

 Low Rank Approximation
— Sketching for fast SVD

— Sketching for fast robust low rank approximation

* Recent sketching/sampling work for robust problems

Other Fithess Measures

Example: Method of least absolute deviation (I, -regression)
* Find x* that minimizes |Ax-b|, = X |b, — <A., x>|
« Cost is less sensitive to outliers than least squares

« Can solve via linear programming

What about the many other fithess measures used in practice?

M-Estimators

“Measure” function
-~-M:R->R¢ 0

— M(x) = M(-x), M(0) =0

— M is non-decreasing in |X|

YIm = Zi=1" M(y;)
Solve min, |Ax-b|,,

Least squares and L,-regression are special
cases

Huber Loss Function

M(x) = x?/(2c) for |x| % ¢
M(x) = |x|-c/2 for |x]| > C

Enjoys smoothness properties of [,2 and
robustness properties of |,

Other Examples

« L4-L,

M(x) = 2((1+x2/2)2 — 1)

 Fair estimator

M(x) = c? [|x|/c - log(1+]x|/c)]

* Tukey estimator

M(x) = ¢4/6 (1-[1-(x/c)?]?) if|x| % C
= c?/6 if [Xx| >c

Nice M-Estimators

An M-Estimator is nice if it has at least linear growth and at
most quadratic growth

There is Cy, > 0 so that for all a, a’ with |a| ¢ |a’| > 0,
|a/a’]? ¢ M(a)/M(a’) ¢ C,, |a/a|

Any convex M satisfies the linear lower bound

Any sketchable M satisfies the quadratic upper bound

— sketchable => there is a distribution on k x n matrices S for which |Sx|,
= § (|x|yy) with good probability and k is slow-growing function of n

Nice M-Estimator Theorem

[Nice M-Estimators] O(nnz(A)) + T(poly(d log n)) time algorithm
for nice M to output x’ so that for any constant C > 1, with
probability 99%:

|AX’-b|yy & C min, |Ax-b|y,

Remarks:

- T(poly(d log n)) is time to solve a weighted poly(d log n)-
sized version of M-regression

- For convex nice M-estimators can solve with convex
programming, but slow — poly(nd) time

- Theorem also applies to non-convex M
- Our sketch is “universal”
- Can get (1+€)-approximation via sampling techniques

V >

-The same M-Sketch works
ar g|] pica M-estimators!

- many analyses of this -Tb|y M
data structure don't
work since they reduce
the problem to a non-
convex problem

JU

- Sketch used for
estimating frequency
moments [Indyk, W] and
earthmover distance
[Verbin, Zhang]

« S' are independent Coun

« D' is n x n diagonal and uniTc
fraction of the n rows

M-Sketch Intuition

For a given y = Ax-b, consider [Ty|,, vy = Z; w; M((Ty);)
[Contraction] [Ty|,m ¢ -9 lyly with probability 1-exp(-d log n)
[Dilation] |Ty|,m % 1.1 |y|m with probability 99%

Contraction allows for a net argument (no scale-invariance!)
Dilation implies the optimal y* does not dilate much

Proof: try to estimate contribution to |y|,, at all scales
— E.g.,ify=(n, 1,1, ..., 1) with a total of n-1 1s, then |y|, =n + (n-1)*1

— When estimating a given scale, use the fact that smaller stuff cancels
each other out in a bucket and gives its 2-norm

Talk Outline

 Regression
— Sketching for least squares regression
— Sketching for fast robust regression

 Low Rank Approximation
— Sketching for fast SVD

— Sketching for fast robust low rank approximation

* Recent sketching/sampling work for robust problems

Low Rank Approximation

Als an n x d matrix
Think of n points in R

Goal: find a low rank matrix approximating A
Easy to store, data more interpretable

A, = argmin .., « matrices 8 1A — B|F can be found via the SVD

Computing Ay exactly is expensive

Approximate Low Rank Approximation

Goal: output a rank k matrix A, so that
ARl % (1+€) [A-A]

Can do this in nnz(A) + (n+d)*poly(k/c)
time [CW]

Solution to Low-Rank Approximation [S]

Given n x d input matrix A

Compute S*A using a sketching matrix S with k/e << n
rows. S*A takes random linear combinations of rows of A

SA

Project rows of A onto SA, then find best rank-k
approximation to points inside of SA.

What is the Matrix S?

e S can be a k/e x n matrix of i.i.d. normal random
variables

* [S] S can be an O~(k/¢) x n Fast Johnson Lindenstrauss
Matrix

 [CW] S can be a poly(k/e) x n CountSketch matrix

Caveat: Projecting the Points onto SA is Slow

Current algorithm:
Compute S*A
Project each of the rows onto S*A

Find best rank-k approximation of projected points
inside of rowspace of S*A

Bottleneck is step 2

[CW] Approximate the projection

Fast algorithm for approximate constrained regression
minrank-k X |X(SA)'A|F2

nnz(A) + (n+d)*poly(k/c) time

Talk Outline

 Regression
— Sketching for least squares regression
— Sketching for fast robust regression

 Low Rank Approximation
— Sketching for fast SVD

— Sketching for fast robust low rank approximation

* Recent sketching/sampling work for robust problems

Robust Low Rank Approximation

Given n x d matrix A, think of its rows as points a4, a,, ...,a, in R4

(Rotational invariance) if you rotate RY by rotation W, obtaining
points a; W, a,W, ...,a,W, cost is preserved

Cost function studied in [DZHZ06, SV07,DV07,FL11,VX12]:

' : p
Jiny 2, 4@V
1

For p in [1,2), cost function is more robust than the SVD (p = 2)

Prior Work on this Cost Function

* A k-dimensional space V' is a (1+ €)-approximation if

z d(a;, V)P < (1 +€) min Z d(a;, V)P
: k—dim V L
1 1
* For constant 1 < p < oo,
* (1+ €)-approximation in n - d -poly(k/€) + exp(poly(k/€)) time [SVO7]

* (Weak Coreset) poly(k/e)-dimensional space V’ containing a k-dim space
V" which is a (1+ €)-approximation in n - d -poly(k/€) time [DV07, FL11]

* Forp > 2,
* NP-hard to approximate up to a constant factor y, [DTV10, GRSW12].

 there is a poly(nd) time \/Zyp-approximation algorithm [DTV10]

Questions from Prior Work

1. (Exponential Term) Is exp(poly(k/€)) timefor 1 < p < 2
necessary?

2. (Input Sparsity) Can one achieve a leading order term in the
time complexity of nnz(A), as in the case of p = 2?

3. (M-Estimators) What about algorithms for M-estimator loss
functions:

) _rgiigvz M(d(a;, V)
1

Results for Robust Low Rank Approximation [CW]

* (Hardness) For p in [1,2) it’s NP-hard to get a (1+1/d)-approximation
* Since p > 2 is also hard, there is a “singularity” atp =2

* (Input Sparsity Time Algorithm) For p in [1,2) we get an algorithm in time
nnz(A) + (n+d)poly(k/€) + exp(poly(k/€))

* (Weak Coreset) Get nnz(A) + (n+d)poly(k/€) time and dimension poly(k/€)

* (Nice M-Estimators) For L = (logn)®U1°8 %) in O(nnz(A)) + (n+d) poly(L/€)
time, get weak coreset of dimension poly(L/¢)

Template A|g el SKip this step if you

just want a weak

coreset
(Create Probabilities) Find probabilifiés—p1p5, 5+ = poly(k)

(Sample) Include the i-th royw0f A in a sample set S independently with
probability p;

(Adaptively Sampr€e) Sample a set T of poly(k/e) rows of A proportional
to their “residual” M(|A; — AiPs|,)

(Brute Force) Find the best k-dimensional subspace in span(S U T)

What are p4, ..., pp? For p = 1:
- Compute AR for a CountSketch matrix R with ¢ = poly(k) columns
- Let U € R™*¢, colspan(U) = colspan(AR), and for all vectors x,
x|; < |Ux|; < poly(kK)[x]4
- pi = lejUly

Talk Outline

 Regression
— Sketching for least squares regression
— Sketching for fast robust regression

 Low Rank Approximation
— Sketching for fast SVD

— Sketching for fast robust low rank approximation

« Recent sketching/sampling work for robust problems

Recent Work

* Low rank approximation with entrywise £,-norm loss

o [SWZ17]: for p in [1,2), get a poly(k log n)-
approximation in nnz(A) + n*poly(k log n) time

« [CGKPW17]: forany p = 1, get a poly(k log n)-
approximation in poly(n) time

« [BKW17]: for p =0, i.e., robust PCA, get poly(k log n)-
approximation with a weak coreset of size poly(k log n)

« [BBBKLW18]: for p in (0,2), get a (1+€)-approximation

k
in nP°Y®@ time

General Robust Loss Functions

* Find rank-k A with |A — Al <a- min |A—B|; forapproximation
rank—k B
factora =1

* For amatrix C, [C|g = ¥;;8(C;;) where g:R — R*°

e [SWZ18]: in poly time, get a poly(k log n)-approximation with a weak
coreset of size poly(k log n), for any g which

* has approximate triangle inequality
* and is monotone and approximately symmetric
* and has an efficient regression algorithm

* Includes, e.g., Huber loss function

Tukey Regression [CWW]

Regression algorithms for loss functions which “plateau”

Biweight

* For Tukey Biweight loss M, and regression min, |Ax-b|,,, in
nnz(A) log n time can reduce to a small poly(d/€e)-sized problem

* NP-hard to approximate |Ax-b|,, up to a constant factor

