Sketching for M-Estimators and Robust Numerical Linear Algebra

David Woodruff CMU

Talk Outline

- Regression
 - Sketching for least squares regression
 - Sketching for fast robust regression
- Low Rank Approximation
 - Sketching for fast SVD
 - Sketching for fast robust low rank approximation
- Recent sketching/sampling work for robust problems

Linear Regression

Matrix form

Input: $n \times d$ -matrix A and a vector $b = (b_1, ..., b_n)$ n is the number of examples; d is the number of unknowns

Output: x* so that Ax* and b are close

Consider the over-constrained case, when n " d

Least Squares Regression

- Find x* that minimizes |Ax-b|₂²
- Ax* is the projection of b onto the column span of A
- Desirable statistical properties
- Closed form solution: $x^* = (A^TA)^{-1} A^T b$

Sketching to Solve Least Squares Regression

- How to find an approximate solution x to min_x |Ax-b|₂?
- Goal: output x' for which |Ax'-b|₂ % (1+ε) min_x |Ax-b|₂
 with high probability
- Draw S from a k x n random family of matrices, for a value k << n
- Compute S*A and S*b
- Output the solution x' to min_{x'} |(SA)x-(Sb)|₂

How to Choose the Right Sketching Matrix?

- Recall: output the solution x' to min_{x'} |(SA)x-(Sb)|₂
- Lots of matrices work
- S is d/ε² x n matrix of i.i.d. Normal random variables
- Computing S*A may be slow…
- Can speed up to O(nd log n) time using Fast Johnson Lindenstrauss transforms [Sarlos]
 - Not sensitive to input sparsity

Faster Sketching Matrices [CW]

CountSketch matrix

Think of rows as hash buckets

- Define k x n matrix S, for k = O(d²/ε²)
- S is really sparse: single randomly chosen non-zero entry per column

S*A computable in nnz(A) time (See also [MM,MP,NN])

Simple Proof [ANW]

- Replace A with [A, b], and then show $|SAx|_2 = (1 \pm \varepsilon) |Ax|_2$ for all x
 - Can assume columns of A are orthonormal
 - Can assume x is a unit vector
- SA is a $6d^2/(\delta \epsilon^2)$ x d matrix
- Suffices to show $|A^TS^TSA I|_2 \le |A^TS^TSA I|_F \% \epsilon$
- Approximate matrix product for all matrices C and D $\Pr[|\mathsf{CS^TSD} \mathsf{CD}|_\mathsf{F}^2 \leq [6/(\delta(\# \text{ rows of S}))] * |\mathsf{C}|_\mathsf{F}^2 |\mathsf{D}|_\mathsf{F}^2] \geq 1 \delta$
- Set $C = A^T$ and D = A
- Then $|A|^2_F = d$ and (# rows of S) = 6 $d^2/(\delta \epsilon^2)$

Talk Outline

- Regression
 - Sketching for least squares regression
 - Sketching for fast robust regression
- Low Rank Approximation
 - Sketching for fast SVD
 - Sketching for fast robust low rank approximation
- Recent sketching/sampling work for robust problems

Other Fitness Measures

Example: Method of least absolute deviation (I1 -regression)

- Find x* that minimizes $|Ax-b|_1 = \sum |b_i \langle A_{i*}, x \rangle|$
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming

What about the many other fitness measures used in practice?

M-Estimators

- "Measure" function
 - M: R -> R[¿] 0
 - -M(x) = M(-x), M(0) = 0
 - M is non-decreasing in |x|
- $|y|_M = \sum_{i=1}^n M(y_i)$
- Solve min_x |Ax-b|_M
- Least squares and L₁-regression are special cases

Huber Loss Function

$$M(x) = x^2/(2c)$$
 for $|x| % c$

$$M(x) = |x|-c/2 \text{ for } |x| > c$$

Enjoys smoothness properties of I₂² and robustness properties of I₁

Other Examples

•
$$L_1-L_2$$

 $M(x) = 2((1+x^2/2)^{1/2} - 1)$

Fair estimator

$$M(x) = c^2 [|x|/c - log(1+|x|/c)]$$

Tukey estimator

$$M(x) = c^2/6 (1-[1-(x/c)^2]^3)$$
 if $|x| \% c$
= $c^2/6$ if $|x| > c$

Nice M-Estimators

- An M-Estimator is nice if it has at least linear growth and at most quadratic growth
- There is C_M > 0 so that for all a, a' with |a| ¿ |a'| > 0,
 |a/a'|² ¿ M(a)/M(a') ¿ C_M |a/a'|
- Any convex M satisfies the linear lower bound
- Any sketchable M satisfies the quadratic upper bound
 - sketchable => there is a distribution on k x n matrices S for which $|Sx|_M = S(|x|_M)$ with good probability and k is slow-growing function of n

Nice M-Estimator Theorem

[Nice M-Estimators] O(nnz(A)) + T(poly(d log n)) time algorithm for nice M to output x' so that for any constant C > 1, with probability 99%:

 $|Ax'-b|_M \& C min_x |Ax-b|_M$

Remarks:

- T(poly(d log n)) is time to solve a weighted poly(d log n)sized version of M-regression
- For convex nice M-estimators can solve with convex programming, but slow poly(nd) time
- Theorem also applies to non-convex M
- Our sketch is "universal"
- Can get $(1+\epsilon)$ -approximation via sampling techniques

-The same M-Sketch works for all pice M-estimators!

 many analyses of this data structure don't work since they reduce the problem to a nonconvex problem

՝-Tb|_{w.M}

Sⁱ are independent Count;

- Sketch used for estimating frequency moments [Indyk, W] and earthmover distance [Verbin, Zhang]

Dⁱ is n x n diagonal and unitor
 fraction of the n rows

M-Sketch Intuition

- For a given y = Ax-b, consider $|Ty|_{w.M} = \Sigma_i w_i M((Ty)_i)$
- [Contraction] |Ty|_{w,M} ¿ .9 |y|_M with probability 1-exp(-d log n)
- [Dilation] |Ty|_{w,M} % 1.1 |y|_M with probability 99%
- Contraction allows for a net argument (no scale-invariance!)
- Dilation implies the optimal y* does not dilate much
- Proof: try to estimate contribution to |y|_M at all scales
 - E.g., if y = (n, 1, 1, ..., 1) with a total of n-1 1s, then $|y|_1 = n + (n-1)^*1$
 - When estimating a given scale, use the fact that smaller stuff cancels each other out in a bucket and gives its 2-norm

Talk Outline

- Regression
 - Sketching for least squares regression
 - Sketching for fast robust regression
- Low Rank Approximation
 - Sketching for fast SVD
 - Sketching for fast robust low rank approximation
- Recent sketching/sampling work for robust problems

Low Rank Approximation

- A is an n x d matrix
 - Think of n points in R^d
- Goal: find a low rank matrix approximating A
 - Easy to store, data more interpretable
- A_k = argmin_{rank k matrices B} $|A B|_F$ can be found via the SVD
- Computing A_k exactly is expensive

Approximate Low Rank Approximation

Goal: output a rank k matrix A', so that
 |A-A'|_F % (1+ε) |A-A_k|_F

 Can do this in nnz(A) + (n+d)*poly(k/ε) time [CW]

Solution to Low-Rank Approximation [S]

- Given n x d input matrix A
- Compute S*A using a sketching matrix S with k/ε << n rows. S*A takes random linear combinations of rows of A

SA

 Project rows of A onto SA, then find best rank-k approximation to points inside of SA.

What is the Matrix S?

- S can be a k/ε x n matrix of i.i.d. normal random variables
- [S] S can be an O~(k/ε) x n Fast Johnson Lindenstrauss
 Matrix
- [CW] S can be a poly(k/ε) x n CountSketch matrix

Caveat: Projecting the Points onto SA is Slow

- Current algorithm:
 - 1. Compute S*A
 - 2. Project each of the rows onto S*A
 - 3. Find best rank-k approximation of projected points inside of rowspace of S*A
- Bottleneck is step 2
- [CW] Approximate the projection
 - Fast algorithm for approximate constrained regression min_{rank-k X} |X(SA)-A|_F²
 - nnz(A) + (n+d)*poly(k/ε) time

Talk Outline

- Regression
 - Sketching for least squares regression
 - Sketching for fast robust regression
- Low Rank Approximation
 - Sketching for fast SVD
 - Sketching for fast robust low rank approximation
- Recent sketching/sampling work for robust problems

Robust Low Rank Approximation

- Given n x d matrix A, think of its rows as points a₁, a₂, ..., a_n in R^d
- (Rotational invariance) if you rotate R^d by rotation W, obtaining points a₁W, a₂W, ..., a_nW, cost is preserved
- Cost function studied in [DZHZ06, SV07,DV07,FL11,VX12]:

$$\min_{k-\dim V} \sum_{i} d(a_i, V)^p$$

For p in [1,2), cost function is more robust than the SVD (p = 2)

Prior Work on this Cost Function

• A k-dimensional space V' is a (1+ ϵ)-approximation if

$$\sum_{i} d(a_i, V')^p \le (1 + \epsilon) \min_{k - \dim V} \sum_{i} d(a_i, V)^p$$

- For constant $1 \le p < \infty$,
 - $(1+\epsilon)$ -approximation in $n \cdot d \cdot poly(k/\epsilon) + exp(poly(k/\epsilon))$ time [SV07]
 - (Weak Coreset) poly(k/ϵ)-dimensional space V' containing a k-dim space V'' which is a $(1+\epsilon)$ -approximation in $n \cdot d \cdot poly(k/\epsilon)$ time [DV07, FL11]
- For p > 2,
 - NP-hard to approximate up to a constant factor γ_p [DTV10, GRSW12].
 - there is a poly(nd) time $\sqrt{2\gamma_p}$ -approximation algorithm [DTV10]

Questions from Prior Work

- 1. (Exponential Term) Is $\exp(\text{poly}(k/\epsilon))$ time for $1 \le p < 2$ necessary?
- 2. (Input Sparsity) Can one achieve a leading order term in the time complexity of nnz(A), as in the case of p = 2?
- 3. (M-Estimators) What about algorithms for M-estimator loss functions:

$$\min_{k-\dim V} \sum_{i} M(d(a_i, V))$$

Results for Robust Low Rank Approximation [CW]

- (Hardness) For p in [1,2) it's NP-hard to get a (1+1/d)-approximation
 - Since p > 2 is also hard, there is a "singularity" at p = 2
- (Input Sparsity Time Algorithm) For p in [1,2) we get an algorithm in time nnz(A) + (n+d)poly(k/ϵ) + exp(poly(k/ϵ))
- (Weak Coreset) Get nnz(A) + (n+d)poly(k/ ϵ) time and dimension poly(k/ ϵ)
- (Nice M-Estimators) For $L=(\log n)^{O(\log k)}$, in O(nnz(A))+(n+d) poly(L/ ϵ) time, get weak coreset of dimension poly(L/ ϵ)

Template Algoria

Skip this step if you just want a weak coreset

- 1. (Create Probabilities) Find probabilities $p_1, p_2, ..., p_{n-1,1} = poly(k)$
- 2. (Sample) Include the i-th row of A in a sample set S independently with probability p_i
- 3. (Adaptively Sample) Sample a set T of poly(k/ϵ) rows of A proportional to their "residual" $M(|A_i A_iP_S|_2)$
- 4. (Brute Force) Find the best k-dimensional subspace in span(S ∪ T)

What are $p_1, ..., p_n$? For p = 1:

- Compute AR for a CountSketch matrix R with c = poly(k) columns
- Let $U \in R^{n \times c}$, colspan(U) = colspan(AR), and for all vectors x, $|x|_1 \le |Ux|_1 \le poly(k)|x|_1$
- $-p_i = |e_i U|_1$

Talk Outline

- Regression
 - Sketching for least squares regression
 - Sketching for fast robust regression
- Low Rank Approximation
 - Sketching for fast SVD
 - Sketching for fast robust low rank approximation
- Recent sketching/sampling work for robust problems

Recent Work

- Low rank approximation with entrywise ℓ_p -norm loss
 - [SWZ17]: for p in [1,2), get a poly(k log n)approximation in nnz(A) + n*poly(k log n) time
 - [CGKPW17]: for any p ≥ 1, get a poly(k log n)approximation in poly(n) time
 - [BKW17]: for p = 0, i.e., robust PCA, get poly(k log n)approximation with a weak coreset of size poly(k log n)
 - [BBBKLW18]: for p in (0,2), get a (1+ ϵ)-approximation in $n^{\text{poly}(\frac{k}{\epsilon})}$ time

General Robust Loss Functions

- Find rank-k \widehat{A} with $|\widehat{A}-A|_g \le \alpha \cdot \min_{rank-k \ B} |A-B|_g$ for approximation factor $\alpha \ge 1$
 - For a matrix C, $|C|_g = \sum_{i,j} g(C_{i,j})$ where $g: R \to R^{\geq 0}$
- [SWZ18]: in poly time, get a poly(k log n)-approximation with a weak coreset of size poly(k log n), for any g which
 - has approximate triangle inequality
 - and is monotone and approximately symmetric
 - and has an efficient regression algorithm
- Includes, e.g., Huber loss function

Tukey Regression [CWW]

Regression algorithms for loss functions which "plateau"

- For Tukey Biweight loss M, and regression $\min_{x} |Ax-b|_{M}$, in $nnz(A) log n time can reduce to a small <math>poly(d/\epsilon)$ -sized problem
- NP-hard to approximate |Ax-b|_M up to a constant factor