Regression in the Presence of
Additive Oblivious Corruptions

Sushrut Karmalkar
UW-Madison



Linear Regression

Given: n samples {(x, 1), --.,(x,, y,)} € RY % R s.t.

y: = w¥ - x; + €; where €, ~ /' (0,6°)

Goal: Recover w¥*.
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Classic approach: Least Squares Estimator
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Linear Regression

Issue with least squares: Sensitive to even a single outlier!

Can we design efficient and robust estimators?



How do we model corruption?

Huber Contamination Model:

A set of n samples is y-corrupted if they are drawn from
(1 —n)F + nO where,

® .7 is the “inlier distribution” from some known class of
distributions

® (0 is an arbitrary and unknown outlier distribution.

Information Theoretic Optimal Error: ||w — w*|| < O(on)



Consistency

Standard setting Huber Contamination Model
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Algorithm achieving = O error Algorithm achieving error f(r7) > 0

Consistency: More data — Improved Accuracy



s there a setting that allows for the tollowing
simultaneously?

® Arbitrary (label) outliers
® Consistency

® Efficient recovery



Oblivious Noise

Given: Independent samples {(x{,¥{), ..., (X,,y,)} € RY % R.
i =w*-x;+ €+ ¢
where & ~ Dy, €; ~ #(0,6%) Jfawn i.i.d.\nd Pr[¢; = 0] > S

Goal: Recover W s.t. E [(W - #— w* - x)*] is sy

Measurement Noise Oblivious Noise



Oblivious Noise

Given: Independent samples {(x{,¥{), ..., (X,,y,)} € R? x R.
Y =w*-x+€+¢;
where ¢; ~ Dy, €; ~ N (0,6%) drawn i.i.d. and Pr[& = 0] > j
Goal: Recover ws.t. E,[(W - x — w™* . x)?] is small

Captures a wide range of heavy-tailed and asymmetric noises!
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Parameters of Interest

® |nlier probability (/)
® Sample complexity (n) and runtime
® Final error

® Assumptions on noise (&) and features.



Problems Studied

Supervised Learning

y=fw*,x)+¢&
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GLM Regression

Unsupervised Learning
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Supervised Learning

y=fw*,x)+¢&
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Linear Regression

GLM Regression

Today

No proofs :(

Discuss simple algorithms and
some of the core ideas involved



Outline

® |inear Regression with Oblivious Noise
® Hard-thresholding Based Algorithm
® Simple(r) algorithms for Gaussian Features

® | ecarning GLMs with Oblivious Noise



Biased Survey: Linear Regression

® [Bhatia-Jain-Kamalaruban-Kar'17]: # > 0.99, n = O(d) and X
satisfies some strong-convexity and smoothness conditions.

® [Suggala-Bhatia-Ravikumar-Jain‘19]: / > 1/loglog(n), n = O(d)
same assumptions.

® [Tsakonas-Jaldén-Sidiropoulos-Ottersten’14]: f > 1/\/5, but
n = 0(d?) and x ~ N (0,1,). By minimizing Huber loss.

® [Pesme-Flammarion’20]: x ~ /V(O,Id). First algorithm in the
streaming setting (SGD on ¢;-loss).

® [d'Orsi-Novikov-Steurer'21]: For symmetric oblivious noise and
more general feature distributions.

® [Norman-Weinberger-Levy’22]: First analysis for 2 > 0.



Summary

Paper Features Inlier Rate Error Rate Estimator
BJKK'17] | #0E;z>0" > 0.99 O(d/np? HT
SBRJM9] | #OZ:T>0 | > 1/loglogn) | OW@/np?) HT
[TJSO’14] N(0,1,) > 1/A\/n Ou5(1/n) | Huber Loss

[PF’20] N (0,2);Z >0 > 1/4/n O(d/np?) L1 Loss

Non-centered; Mild

) ) 2
[d’ONS’21] anticoncentration > 1/4/n o(d/np?) Huber Loss
INWL'22] Subxga;%suan, > 1/A/n O(d/ﬂ\/E) Huber Loss

Also results for sparse signals and showing optimality.

* Also for more general classes



Today

Paper Features Inlier Rate Error Rate Estimator
[BJKK’17] N(0,2);Z >0 > 0.99 O(d/nf?) HT
Non-centered; Mild
’ ’ ) 2
[d"ONS™21] anticoncentration > 1y/n O(d/nf*)

Further assume features are Gaussian



Hard-thresholding Based
Algorithm



BJKK Theorem

Features: x ~ A4(0,2) Noise: Pr[é = 0] > f > 0.99

Theorem [BJKK'17]: Foranye,6 >0and f > 1 — 107>, there is
a polynomial time algorithm that draws n samples, runs in time

poly(d, n,log ||&||, log(1/€)) and recovers w satistying

. ~ o d
[w—w*|| <e+ Oy 1/
| \/j‘mm(z) o

Runtime depends on log(||£]|5)

Improved in their follow-up work.

[Bhatia-Jain-Kamalaruban-Kar'17]



BJKK Algorithm

Approach: Recover the noise as well as signal.

Problem: min 1X"w — (v — §)||% = (1)
weR", ||&]lo<(1—p)n

For a fixed & the minimizing wis w = (XX )~ X(y — &).
Let Py := XT(XXT)™'X and f(&) := (I - Py)(y — O3

()= min ()= min |- P(y =5l
lello<(1-pn lello<(1-pn

Algorithm: Gradient-descent on f(£) with hard thresholding



BJKK Algorithm

Forv € R", HT(v) zeros out the smallest n — k entries of v

E,=0, Py =X"XX")"'X, k> 2(1 - p)n
While [|E"— &7 > 7

END — HTy (&' = VA(EY)
Return w! « (XX ")~ 'X(y — &)



Simple(r) Algorithms for
GGaussian Features



Assumptions

Assumption: x ~ /(0,1) and the oblivious noise is symmetric
We can transform the data to satisfy this

® etz ~ {+1,— 1} uniformly at random

® y; = ¥ =5y = w* - (4x) + (76) + (z€)

® X, > X; = ;X



Gaussian Features: 1-dimension

Assumption: x ~ /(0,1) and the oblivious noise is symmetric

Theorem [d'ONS’21]: Given 7 > 0, there is an algorithm taking,
® n > t/f* samples,
® Runs in O(n) time,

And with probability 1 — 2 exp(—£2(r)) recovers w satistying,
T

n.lgz'

| — w*|* <

[d'Orsi-Novikov-Steurer'21]



Gaussian Features: 1-dimension

(vi/x;)) = w* + (€, + &)/ x;.

Symmetric

Estimator: w = median ({yi/xi x| = 1/2}?=1)

e Anticoncentration: Pr [|x;| > 1/2] > Q(1).
x~N(0,1)

® (y;/x;) — w* is symmetric and concentrated around O.

Pr[|(e;+ &)/x;| < 7] > Pr[|e;+ & | < /2] > pr/20.

What about higher dimensions?



Gaussian Features: d-dimensions

It oblivious noise is symmetric, can extend one-dimensional case

Assumption: x ~ //(0,],) and the oblivious noise is symmetric
Theorem [d'ONS'21]: Given A > 10 + ||[w*||, there is a polytime

algorithm that draws n > Q, (d/f*) samples and with
orobability 1 — d~!'Y recovers W satisfying

- [ d
W —w*|| <O (—)
np?

[d'Orsi-Novikov-Steurer'21]



ldeas

Apply one-d estimator coordinate-wise. For coordinate k,

Vi 1

—l=w]j‘+— € + E wk . x. 4+ & |.
J ’

* * j#k

(1 + [lw*||*) log(d)
np?

How do we deal with dependence on |[w*||?

Recovers w]zk to an additive error of O

Bootstrap!

® et w¥ be the i-th estimate and {(x,y)} be fresh samples.

® Construct {(x;,y; — w® - x7) } with signal w* — w® and norm < ||w*||/2.

® Repeat to get improved estimate.




Learning Generalized Linear
Models with Oblivious Noise



Regression with Oblivious Noise

Given: independent samples {(x{,y¢), ..., (x,,¥,)} € RYx R.
v, =gw* - -x)+¢€+E
where & ~ 9, €; ~ N (0,6%) drawn i.i.d. and Pr(é, =0] > p
Goal: Recover w s.t. E [(g(W - x) — g(w™ - x))?] is small

We assume g (link) is monotonically increasing and Lipschitz

Internat ional Series on Actuar ial Science

Generalized Linear Models ] 2(2)
with Applications in Generalized
Engineering and the Sciences Linear Models for

TN Insurance Data

Piet de jong and >

Raymond H. Myers, Douglas C. Montgomery, Gillian . Heller

S T

gw - x)




Generality of our setting

Our Goal: First algorithm for GLM regression with oblivious
noise s.t. n = oo implies error — 0

Setting: ||x|[,|[w*|| < poly(d). No further assumptions on &.

Can’t symmetrize the noise while preserving the problem

—o(W* - x;) # o(W* - —X;)

Setting sometimes not uniquely identifiable.

2(z) = max(0,z) = ReLU(z)

t t True t Noisy
| @ | @ | @
: . 4 True
N1 @ "1 |/® Noisy |/ @
< > — —_— — —_—
v X l X v X

Data Solution 1 Solution 2



Generality of our setting

Our Goal: First algorithm for GLM regression with oblivious
noise s.t. n = oo implies error — 0

Setting: ||x|[,|[w*|| < poly(d). No further assumptions on &.

Can’t symmetrize the noise while preserving the problem
—o(W* - x;) # o(W* - —X;)

Setting sometimes not uniquely identifiable.

In this case, we output a list!



Our Result

Theorem [DKPT'23]: There exists an algorithm which,

® Draws polynomially many samples.

® Runs in polynomial time.

® If uniquely identifiable: Recovers an estimate for g(w* - x)

Else: returns a list containing an estimate for g(w™* - x).

Today:
® \What to do when median(&) = 0.

® How we prune candidates.

[Diakonikolas-K-Park-Tzamos'23]



Median O Oblivious Noise

Without g( - ): minimize £;-loss(w) = %Zl |w - X; =y

What happens when g comes into the picture?

g makes standard losses non-convex (e.g. %Zl lgw - x) —y;|)

Landscape Design: Find a convex surrogate for nonconvex loss.

V‘ﬂn’\/

<€— Convex Surrogate

Original Loss

~ Y (8w -x) =y = - X[ g(t) — yy d)

Squared loss — Matching loss*

*Dating back to Auer, Herbster, Warmuth’95



Median O Oblivious Noise

Without g( - ): minimize £;-loss(w) = %Zl |w - X; =y

What happens when g comes into the picture?

g makes standard losses non-convex (e.g. %Zl lgw - x) —y;|)

Landscape Design: Find a convex surrogate for nonconvex loss.

V‘ﬂn’\/

<4— Convex Surrogate

Original Loss

Solution: Find w minimizing %Zl fgm"sign(g(t) —y,) dt

median(&)#0: Family of similar losses + pruning procedure

!

One for each possible quantile



Median O Oblivious Noise

Without g( - ): minimize £;-loss(w) = %Zl |w - X; =y

What happens when g comes into the picture?

g makes standard losses non-convex (e.g. %Zl lgw - x) —y;|)

Landscape Design: Find a convex surrogate for nonconvex loss.

V‘ﬂn’\/

<4— Convex Surrogate

Original Loss

Solution: Find w minimizing %Zl fgm"sign(g(t) —y,) dt
median(£)#0: Family of similar losses + pruning procedure

How do we prune?



One-dimensional Pruning

Stylized one-dimensional setting:

g(t)=t,0 =1 and pde (x) > ctorx € (8,10) U (0,2)

Given w, how do we check that w is a solution?

Based on quantiles ot y, —w - x; = (W* —w) - x;
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High-dimensional Pruning

In higher dimesnions not as clear which regions to condition on

Stylized setting: Assume x is anticoncentrated

Given: L = {wy,...,w,} such that w* € L

Recover: w* from L.

Tournament-style algorithm:

® Foreachw,w’ € L:

Partition RY depending on value of v(x) := (w - x) — (W' - X).

® Prune if you can identity 2 regions s.t. the quantiles are sufficiently
different.

® Since w* € L, it wis to be eliminated, such regions will be identitied.




Summary

® Oblivious noise: Captures a broad range of additive
independent noise models.

® Today: A biased subsampling of the literature and a
result on GLMs with oblivious noise.

® Open questions:

® \What are the optimal rates for learning GLMs with
oblivious noise?

® Open questions in the context of location
estimation, stochastic convex optimization, etc.



