Regression in the Presence of Additive Oblivious Corruptions

Sushrut Karmalkar

UW-Madison

Linear Regression

Given: n samples $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{R}^d \times \mathbb{R}$ s.t.

$$y_i = w^* \cdot x_i + \epsilon_i$$
 where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Goal: Recover w*.

Classic approach: Least Squares Estimator

Return the minimizer of $\frac{1}{n} \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$

Linear Regression

Issue with least squares: Sensitive to even a single outlier!

Can we design efficient and robust estimators?

How do we model corruption?

Huber Contamination Model:

A set of n samples is η -corrupted if they are drawn from $(1 - \eta)\mathcal{F} + \eta\mathcal{O}$ where,

- ullet is the "inlier distribution" from some known class of distributions
- ullet \mathcal{O} is an arbitrary and unknown outlier distribution.

Information Theoretic Optimal Error: $||w - w^*|| \le O(\sigma \eta)$

Consistency

Huber Contamination Model

Algorithm achieving ≈ 0 error

Algorithm achieving error $f(\eta) > 0$

Consistency: More data → Improved Accuracy

Is there a setting that allows for the following simultaneously?

- Arbitrary (label) outliers
- Consistency
- Efficient recovery

Oblivious Noise

Given: Independent samples $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{R}^d \times \mathbb{R}$.

$$y_i = w^* \cdot x_i + \epsilon_i + \xi_i$$

 $y_i = w^* \cdot x_i + \epsilon_i + \xi_i$ where $\xi_i \sim D_\xi$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ drawn i.i.d. and $\Pr[\xi_i = 0] \geq \beta$ **Goal:** Recover \hat{w} s.t. $\mathbb{E}_x[(\hat{w} \cdot x - w^* \cdot x)^2]$ is small

Measurement Noise

Oblivious Noise

Oblivious Noise

Given: Independent samples $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{R}^d \times \mathbb{R}$.

$$y_i = w^* \cdot x_i + \epsilon_i + \xi_i$$

where $\xi_i \sim D_{\xi}$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ drawn i.i.d. and $\Pr[\xi_i = 0] \geq \beta$

Goal: Recover \hat{w} s.t. $\mathbb{E}_{x}[(\hat{w}\cdot x - w^*\cdot x)^2]$ is small

Captures a wide range of heavy-tailed and asymmetric noises!

Parameters of Interest

- Inlier probability (β)
- ullet Sample complexity (n) and runtime
- Final error
- Assumptions on noise (ξ) and features.

Problems Studied

Supervised Learning

$$y = f(w^*, x) + \xi$$

Linear Regression

GLM Regression

Unsupervised Learning

$$Y = W^* + \xi$$

$$\Pr[\xi = \vec{0}] \ge \beta$$

Location estimation

Stochastic Convex Optimization

Principal Component Analysis

Today

Supervised Learning

$$y = f(w^*, x) + \xi$$

Linear Regression

GLM Regression

No proofs:(

Discuss **simple algorithms** and some of the core ideas involved

Outline

- Linear Regression with Oblivious Noise
 - Hard-thresholding Based Algorithm
 - Simple(r) algorithms for Gaussian Features
- Learning GLMs with Oblivious Noise

Biased Survey: Linear Regression

- [Bhatia-Jain-Kamalaruban-Kar'17]: $\beta \geq 0.99$, $n = \tilde{O}(d)$ and X satisfies some strong-convexity and smoothness conditions.
- [Suggala-Bhatia-Ravikumar-Jain'19]: $\beta > 1/\log\log(n)$, $n = \tilde{O}(d)$ same assumptions.
- [Tsakonas-Jaldén-Sidiropoulos-Ottersten'14]: $\beta > 1/\sqrt{n}$, but $n = \tilde{O}(d^2)$ and $x \sim \mathcal{N}(0,I_d)$. By minimizing Huber loss.
- [Pesme-Flammarion'20]: $x \sim \mathcal{N}(0,I_d)$. First algorithm in the streaming setting (SGD on ℓ_1 -loss).
- [d'Orsi-Novikov-Steurer'21]: For symmetric oblivious noise and more general feature distributions.
- [Norman-Weinberger-Levy'22]: First analysis for $\Sigma \ge 0$.

Summary

Paper	Features	Inlier Rate	Error Rate	Estimator
[BJKK'17]	$\mathcal{N}(0,\Sigma); \Sigma > 0$ *	> 0.99	$\tilde{O}(d/n\beta^2)$	HT
[SBRJ'19]	$\mathcal{N}(0,\Sigma); \Sigma > 0$	$> 1/\log\log(n)$	$\tilde{O}(d/n\beta^2)$	HT
[TJSO'14]	$\mathcal{N}(0,I_d)$	$> 1/\sqrt{n}$	$O_{d,\beta}(1/n)$	Huber Loss
[PF'20]	$\mathcal{N}(0,\Sigma); \Sigma > 0$	$> 1/\sqrt{n}$	$O(d/n\beta^2)$	L1 Loss
[d'ONS'21]	Non-centered; Mild anticoncentration	$> 1/\sqrt{n}$	$O(d/n\beta^2)$	Huber Loss
[NWL'22]	Subgaussian, $\Sigma \geqslant 0$	$> 1/\sqrt{n}$	$O(d/\beta\sqrt{n})$	Huber Loss

Also results for sparse signals and showing optimality.

^{*} Also for more general classes

Today

Paper	Features	Inlier Rate	Error Rate	Estimator
[BJKK'17]	$\mathcal{N}(0,\Sigma); \Sigma > 0$	> 0.99	$\tilde{O}(d/n\beta^2)$	HT

Further assume features are Gaussian

Hard-thresholding Based Algorithm

BJKK Theorem

Features: $x \sim \mathcal{N}(0,\Sigma)$

Noise: $\Pr[\xi = 0] \ge \beta \ge 0.99$

Theorem [BJKK'17]: For any ϵ , $\delta > 0$ and $\beta > 1 - 10^{-5}$, there is a polynomial time algorithm that draws n samples, runs in time poly $(d, n, \log ||\xi||, \log(1/\epsilon))$ and recovers \hat{w} satisfying

$$\|\hat{w} - w^*\| \le \epsilon + \tilde{O}_{d,\delta}\left(\frac{\sigma}{\sqrt{\lambda_{min}(\Sigma)}} \cdot \sqrt{\frac{d}{n}}\right)$$

Runtime depends on $log(\|\xi\|_2)$

Improved in their follow-up work.

BJKK Algorithm

Approach: Recover the noise as well as signal.

Problem:
$$\min_{w \in \mathbb{R}^d, \|\xi\|_0 \le (1-\beta)n} \|X^{\mathsf{T}}w - (y - \xi)\|_2^2 \equiv (1)$$

For a fixed ξ the minimizing w is $w = (XX^T)^{-1}X(y - \xi)$.

Let
$$P_X := X^{\mathsf{T}} (XX^{\mathsf{T}})^{-1} X$$
 and $f(\xi) := \| (I - P_X) (y - \xi) \|_2^2$

$$(1) \equiv \min_{\|\xi\|_0 \le (1-\beta)n} f(\xi) \equiv \min_{\|\xi\|_0 \le (1-\beta)n} \|(I - P_X)(y - \xi)\|_2^2$$

Algorithm: Gradient-descent on $f(\xi)$ with hard thresholding

BJKK Algorithm

For $v \in \mathbb{R}^n$, $HT_k(v)$ zeros out the smallest n-k entries of v

$$\begin{split} \xi_0 &= 0, \, P_X = X^\top (XX^\top)^{-1} X, \, k \geq 2(1-\beta) n \\ \text{While } \|\xi^t - \xi^{t-1}\| \geq \tau \\ \xi^{t+1} \leftarrow \text{HT}_k \; (\xi^t - \nabla f(\xi^t)) \end{split}$$
 Return $w^t \leftarrow (XX^\top)^{-1} X(y - \xi^t)$

Simple(r) Algorithms for Gaussian Features

Assumptions

Assumption: $x \sim \mathcal{N}(0,1)$ and the oblivious noise is symmetric

We can transform the data to satisfy this

- Let $z_i \sim \{+1, -1\}$ uniformly at random
- $\bullet \ y_i \to y_i' = z_i y_i = w^* \cdot (z_i x_i) + (z_i \xi_i) + (z_i \epsilon_i)$
- $\bullet \ x_i \to x_i' = z_i x_i$

Gaussian Features: 1-dimension

Assumption: $x \sim \mathcal{N}(0,1)$ and the oblivious noise is symmetric

Theorem [d'ONS'21]: Given $\tau > 0$, there is an algorithm taking,

- $n \ge \tau/\beta^2$ samples,
- Runs in O(n) time,

And with probability $1 - 2 \exp(-\Omega(\tau))$ recovers \hat{w} satisfying,

$$|\hat{w} - w^*|^2 \le \frac{\tau}{n \cdot \beta^2}.$$

Gaussian Features: 1-dimension

$$(y_i/x_i) = w^* + \frac{(\epsilon_i + \xi_i)/x_i}{\text{Symmetric}}$$

Estimator: $\hat{w} = \text{median} \left(\{ y_i / x_i : | x_i | \ge 1/2 \}_{i=1}^n \right)$

- Anticoncentration: $\Pr_{x_i \sim \mathcal{N}(0,1)}[|x_i| \geq 1/2] \geq \Omega(1)$.
- $(y_i/x_i) w^*$ is symmetric and concentrated around 0.

$$\Pr[|(\epsilon_i + \xi_i)/x_i| \le \tau] \ge \Pr[|\epsilon_i + \xi_i| \le \tau/2] \ge \beta\tau/20.$$

What about higher dimensions?

Gaussian Features: d-dimensions

If oblivious noise is symmetric, can extend one-dimensional case

Assumption: $x \sim \mathcal{N}(0,I_d)$ and the oblivious noise is symmetric

Theorem [d'ONS'21]: Given $\Delta > 10 + \|w^*\|$, there is a polytime algorithm that draws $n \geq \tilde{\Omega}_{\Delta,d}(d/\beta^2)$ samples and with probability $1 - d^{-10}$ recovers \hat{w} satisfying

$$\|\hat{w} - w^*\| \le \tilde{O}\left(\frac{d}{n\beta^2}\right).$$

Ideas

Apply one-d estimator coordinate-wise. For coordinate k,

$$\frac{y_i}{x_k} = w_k^* + \frac{1}{x_k} \left(\epsilon_i + \sum_{j \neq k} w_j^* \cdot x_j + \xi_i \right).$$

Recovers w_k^* to an additive error of $O\left(\frac{(1+\|w^*\|^2) \log(d)}{n\beta^2}\right)$.

How do we deal with dependence on $||w^*||$?

Bootstrap!

- ullet Let $w^{(i)}$ be the i-th estimate and $\{(x_j',y_j')\}$ be fresh samples.
- Construct $\{(x_j', y_j' w^{(i)} \cdot x_j')\}$ with signal $w^* w^{(i)}$ and norm $\ll \|w^*\|/2$.
- Repeat to get improved estimate.

Learning Generalized Linear Models with Oblivious Noise

Regression with Oblivious Noise

Given: independent samples $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{R}^d \times \mathbb{R}$.

$$y_i = g(w^* \cdot x_i) + \epsilon_i + \xi_i$$

where $\xi_i \sim \mathcal{D}$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ drawn i.i.d. and $\Pr[\xi_i = 0] \geq \beta$

Goal: Recover \hat{w} s.t. $\mathbb{E}_{x}[(g(\hat{w}\cdot x)-g(w^*\cdot x))^2]$ is small

We assume g (link) is monotonically increasing and Lipschitz

Generality of our setting

Our Goal: First algorithm for GLM regression with oblivious noise s.t. $n \to \infty$ implies error $\to 0$

Setting: $||x||, ||w^*|| \le \text{poly}(d)$. No further assumptions on ξ .

Can't symmetrize the noise while preserving the problem

$$-\sigma(w^* \cdot x_j) \neq \sigma(w^* \cdot -x_j)$$

Setting sometimes not uniquely identifiable.

$$g(z) = \max(0,z) = \text{ReLU}(z)$$

$$y_2$$

$$y_1$$

$$y_2$$

$$y_2$$

$$y_3$$

$$y_4$$

$$y_2$$

$$y_1$$

$$y_2$$

$$y_3$$

$$y_4$$

$$y_4$$

$$y_4$$

$$y_4$$

$$y_4$$

$$y_5$$

$$y_4$$

$$y_5$$

$$y_4$$

$$y_5$$

$$y_4$$

$$y_5$$

$$y_6$$

$$y_7$$

$$y_8$$

Generality of our setting

Our Goal: First algorithm for GLM regression with oblivious noise s.t. $n \to \infty$ implies error $\to 0$

Setting: $||x||, ||w^*|| \le \text{poly}(d)$. No further assumptions on ξ .

Can't symmetrize the noise while preserving the problem

$$-\sigma(w^* \cdot x_j) \neq \sigma(w^* \cdot -x_j)$$

Setting sometimes not uniquely identifiable.

In this case, we output a list!

Our Result

Theorem [DKPT'23]: There exists an algorithm which,

- Draws polynomially many samples.
- Runs in polynomial time.
- If uniquely identifiable: Recovers an estimate for $g(w^* \cdot x)$

Else: returns a list containing an estimate for $g(w^* \cdot x)$.

Today:

- What to do when median(ξ) = 0.
- How we prune candidates.

Median 0 Oblivious Noise

Without $g(\cdot)$: minimize ℓ_1 -loss $(w) = \frac{1}{n} \sum_i |w \cdot x_i - y_i|$

What happens when g comes into the picture?

g makes standard losses non-convex (e.g. $\frac{1}{n}\sum_{i}|g(w\cdot x_{i})-y_{i}|$)

Landscape Design: Find a convex surrogate for nonconvex loss.

$$\frac{1}{n} \sum_{i} (g(w \cdot x_{i}) - y_{i})^{2} \to \frac{1}{n} \sum_{i} (\int_{0}^{w \cdot x_{i}} g(t) - y_{i} dt)$$
Squared loss \to Matching loss*

Median 0 Oblivious Noise

Without $g(\cdot)$: minimize ℓ_1 -loss $(w) = \frac{1}{n} \sum_i |w \cdot x_i - y_i|$

What happens when g comes into the picture?

g makes standard losses non-convex (e.g. $\frac{1}{n}\sum_{i}|g(w\cdot x_{i})-y_{i}|$)

Landscape Design: Find a convex surrogate for nonconvex loss.

Solution: Find w minimizing $\frac{1}{n}\sum_{i}\int_{0}^{w\cdot x_{i}}\operatorname{sign}(g(t)-y_{i})\ dt$

median(ξ) \neq 0: Family of similar losses + pruning procedure

One for each possible quantile

Median 0 Oblivious Noise

Without $g(\cdot)$: minimize ℓ_1 -loss $(w) = \frac{1}{n} \sum_i |w \cdot x_i - y_i|$

What happens when g comes into the picture?

g makes standard losses non-convex (e.g. $\frac{1}{n}\sum_{i}|g(w\cdot x_{i})-y_{i}|$)

Landscape Design: Find a convex surrogate for nonconvex loss.

Solution: Find w minimizing $\frac{1}{n}\sum_{i}\int_{0}^{w\cdot x_{i}}\operatorname{sign}(g(t)-y_{i})\ dt$

median(ξ) \neq 0: Family of similar losses + **pruning procedure**

How do we prune?

One-dimensional Pruning

Stylized one-dimensional setting:

$$g(t) = t$$
, $\sigma = 1$ and $pdf_{D_x}(x) \ge c$ for $x \in (8,10) \cup (0,2)$

Given w, how do we check that w is a solution?

Based on quantiles of $y_i - w \cdot x_i = (w^* - w) \cdot x_i + (\xi_i + \epsilon_i)$.

High-dimensional Pruning

In higher dimesnions not as clear which regions to condition on

Stylized setting: Assume x is anticoncentrated

Given: $L = \{w_1, ..., w_q\}$ such that $w^* \in L$

Recover: w^* from L.

Tournament-style algorithm:

- For each $w, w' \in L$: Partition \mathbb{R}^d depending on value of $v(x) := (w \cdot x) - (w' \cdot x)$.
- Prune if you can identify 2 regions s.t. the quantiles are sufficiently different.
- Since $w^* \in L$, if w is to be eliminated, such regions will be identified.

Summary

- Oblivious noise: Captures a broad range of additive independent noise models.
- Today: A biased subsampling of the literature and a result on GLMs with oblivious noise.
- Open questions:
 - What are the optimal rates for learning GLMs with oblivious noise?
 - Open questions in the context of location estimation, stochastic convex optimization, etc.